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Lecture 24: Static single assignment
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Static Single Assignment (SSA)

In this lecture we introduce Static Single Assignment (SSA) form

SSA is a way to structuring the intermediate representation so that
every variable is assigned exactly once

« This is formally equivalent to continuation-passing style (CPS) IR
Proposed by Rosen, Wegman and Zadeck in 1988 [1]

Algorithm to compute SSA form efficiently by Cytron, Ferrante,
Rosen, Wegman, and Zadeck at IBM in 1991 [2]

[1] Barry Rosen; Mark N. Wegman; F. Kenneth Zadeck (1988). "Global value
numbers and redundant computations". Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages

[2] Cytron, Ron; Ferrante, Jeanne; Rosen, Barry K.; Wegman, Mark N. & Zadeck, F.
Kenneth (1991). "Efficiently computing static single assignment form and the control
dependence graph". ACM Transactions on Programming Languages and Systems.

13 (4): 451-490
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Advantages of SSA

* Why do compiler writers use SSA?

« SSA form makes use-def chains explicit in the IR, which
in turn helps to simplify some optimizations

« Before getting into the details of SSA form, let’s look at
redundancy elimination as a motivating example

* Redundancy elimination optimizations attempt to
remove redundant computations
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Caution...

« SSAform is seductive

* The optimization benefits are real but not significant in
simple compilers (like yours)
« Itlooks easy but it isn’t

* My suggestion:
* Think about it but probably not wise to attempt it
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Redundancy elimination

« Common redundancy elimination optimizations are
 value numbering

» conditional constant propagation
* common-subexpression elimination (CSE)
 partial-redundancy elimination

orwestan University of _ _ o .
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What they do

read (i) ; = 2; read (i) ;
] =1+ 1; ] =1 % 2; 1L =2 *1+ 1;
k = 1i; k =i + 2; if (i>0) goto L1;
L=k + 1; i =1+ 1;
goto L2;
L1: k=2 * 4 * 1;
L2:
Value numbering Constant propagation Common subexpression
determines that determines that j== elimination (CSE)
j== determines that the

second “2*1” is redundant
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Value numbering

 Basic idea:

« associate a symbolic value to each computation, in a
way that any two computations with the same symbolic
value always compute the same value
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Congruence of expressions

* We define a notion of congruence of expressions:

« X ®Yyiscongruentto a ® b if ® and ® are the same
operator, and:

* X Is congruent to a
 and y is congruentto b
» Typically, we will also take commutativity into account
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Value numbering

e Suppose we have
e t1 = t2 + 1
* Look up the key “t2+1" in a hash table

« Use a hash function that assigns the same hash value
(ie, the same value number) to expressions el and e2 if
they are congruent

« Ifkey “t2+17is not in the table, then put it in with value “t1”

« the next time we hiton “t2+17, can replace it in the IR
with “t1”
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Example

i = vl
read(i); Hash(vl + 1) —j
A j = v2
= + .
L=k I kK = vl
Hash(vl + 1) — j
Therefore 1 = j
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Global value numbering

* Local (i.e. within a basic block) value numbering is easy
enough

« But what about global (i.e. within a procedure) value
numbering?

read(i);
=1+ 1;
k = = 1;
= k + 1,;
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Importance of use-def info

* In the global case we must watch out for multiple
assignments

« \We could do a data flow analysis to extend value
numbering to the global case

read (i) ;
j =1+ 1;
k = k = 1
1=k+1; /
\/

use-def analysis
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Embedding use-def into the IR

« Use-def information is central to several important
optimizations

* The point of static single assignment form (SSA form) is
to represent use-def information explicitly
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SSA form

« Static single-assignment form arranges for every value
computed by a program to have a unique assignment (aka
“definition”)

« A procedure is in SSA form if every variable has (statically)
exactly one definition

« SSA form simplifies several important optimizations,
including various forms of redundancy elimination
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Example

entry entry

| \
z>1 ‘ z1 > 1

P x3 1= ®(x1,x2)
y:=x+1 z:=Xx-3 yli=xl+ 1 z2 :=x3-3
Xx:=4 x4 1= 4
J /
2 =y 4 7 z3 :=x4 +7
exit exit
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Value numbering in SSA

« In SSA form, if x and a are variables, they are congruent
only if they are both live and they are the same variable

« ...orif they are provably the same value (by constant or
copy propagation)
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Creating SSA form

 To translate into SSA form:

* Insert trivial ® functions at join points for each live
variable

e O(t,t,...,t),wherethe number of t’sis the
number of incoming flow edges

* Globally analyze and rename definitions and uses of
variables to establish SSA property

« After we are done with our optimizations, we can throw
away all of the statements involving ® functions
(i.e. “UnSSA”)
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Example

entry entry

|
z>1

X
Il
N

— |
N
|. -
V -
[

X T (D (x,X) yli=x1+ 1| [X3:= d(x1,x2)
z2:=®(z,2) 22 1= x3 - 3
zi=x-3 x4 1= 4
X:=4 4
L z3 :=x4 +7
Z:=X+7
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SSA form for general graphs

* An SSA form with the minimum number of ¢ functions can
be created by using dominance frontiers

 Definitions:

* In a flowgraph, node a dominates node b ("a dom b”)if
every possible execution path from entry to b includes a

« If 2 and b are different nodes, we say that a strictly
dominates b ("a sdom b”)

« If a sdom b, and there is no ¢ such that (a sdom c) and
(c sdom b), we say that a is the immediate dominator of
b ("a idom b")
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Dominance frontier

 For anode a, the dominance frontier of a, DF [a], is the set
of all nodes b such that a strictly dominates an immediate
precedessor of b but not b itself

* More formally:

DF[a] = {b | 4 ¢ € Pred(b) such that
a dom c butnota sdom b}
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Computing DF[a]
* A naive approach to computing DF [a] for all nodes a would

require quadratic time

 However, an approach that usually is linear time involves
cutting into parts:

« DFi[a] = {b e Succ(a)|idom(b)# a}
e DFy[a,c] ={beDF[c] |idom(c)=a A idom(b) # a }

* Then:
DF[a] =DFi[a] u U DFu[a,c]

ceG
(idom(c)=a)
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DF computation, cont’d

« What we want, in the end, is the set of nodes that need ¢
functions, for each variable

 So we define DF [S], for a set of flow graph nodes S:

DF[S] = U DF[a]

aes
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lterated DF

* Then, the iterated dominance frontier is defined as follows:
* DF*[S] =Ilim(i—)DFi[S]
 where
« DFI[S] = DF[S]
« DFi*1[S] = DF[S U DFi[S]]

« If S is the set of nodes that assign to variable t, then
DF*[S U {entry}]is the set of nodes that need ® functions

for t
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Example

Bl

For Kk:
-DF1({entry,B1,B3}) = {B2}

-DFZ2({entry,B1,B3}) =
DF({entry,B1,B2,B3}) = {B2}
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Example

entry For i
J "
k := false -DF!({entry,B1,B3,B6}) =
il (B2, exit}
,» -DF2({entry,B1,B3,B6}) =
Ji<=n|p2 DF({entry,B1,B2,B3,B6,exit})
/\ = {BZ,EXit}
-L =j*2 B3 k... | B4
= true
=i+ 1 /\
printj Il '=1 4+ 1
B5 \/ B6
exit
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Example

For j:
alse -DF!({entry,B1,B3}) = {B2}

DFZ2({entry,B1,B3}) =
DF({entry,B1,B2,B3}) = {B2}

Bl

k.. | B4

print j =1+ 1

BS .~ B6

exit
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Example

So, ® nodes for i,
j, and k are
needed in B2, and
i also needs one in
exit
* exit ® nodes are
usually pruned
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entry
7
k1l := false
B1lil:=1
jl := 2
1
k3 := ®&(kl,k2)
Ji3 1= @(i1,i2) |2
j3 1= ®(j1,32)
i <=n
B3 . ———
j2 :1=3§3 * 2 ..k3...|B4
k2 := true /\
i2:=i3+1||printj3| |i4:=i3+1
| _5'5\/56
i5:= ®(i3,i4)
exit
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Other ways to get SSA

« Although computing iterated dominance frontiers will result
in the minimal SSA form, there are easier ways that work
well for simple languages

« Without knowing the details of your project, | would guess
that your translator always knows when it is creating a join
point and can keep track of the immediate dominator

* If so, it can also create the necessary ® nodes during
translation
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Summary

« SSA form has had a huge impact on compiler design

* Most modern production compilers use SSA form
(including, for example, gcc, suif, LLVM, hotspot, ...)

« Compiler frameworks (i.e. toolkits for creating compilers) all
use SSA form

* The advantages for simple compilers such as our VSL
compiler are low, so using SSA in our project is probably
too much overhead...
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