B NTNU | sioncindrecnoivay

Compiler Construction
Lecture 24: Static single assignment

Michael Engel

based on slides and lecture notes of Frank Pfenning (CMU)

Static Single Assignment (SSA)

In this lecture we introduce Static Single Assignment (SSA) form

SSA is a way to structuring the intermediate representation so that
every variable is assigned exactly once

« This is formally equivalent to continuation-passing style (CPS) IR
Proposed by Rosen, Wegman and Zadeck in 1988 [1]

Algorithm to compute SSA form efficiently by Cytron, Ferrante,
Rosen, Wegman, and Zadeck at IBM in 1991 [2]

[1] Barry Rosen; Mark N. Wegman; F. Kenneth Zadeck (1988). "Global value
numbers and redundant computations". Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages

[2] Cytron, Ron; Ferrante, Jeanne; Rosen, Barry K.; Wegman, Mark N. & Zadeck, F.
Kenneth (1991). "Efficiently computing static single assignment form and the control
dependence graph". ACM Transactions on Programming Languages and Systems.

13 (4): 451-490

@ NTNU | S oy Compiler Construction 24: Static single assignment 2

Advantages of SSA

* Why do compiler writers use SSA?

« SSA form makes use-def chains explicit in the IR, which
in turn helps to simplify some optimizations

« Before getting into the details of SSA form, let’s look at
redundancy elimination as a motivating example

* Redundancy elimination optimizations attempt to
remove redundant computations

@ NTNU | S oy Compiler Construction 24: Static single assignment 3

Caution...

« SSAform is seductive

* The optimization benefits are real but not significant in
simple compilers (like yours)
« Itlooks easy but it isn’t

* My suggestion:
* Think about it but probably not wise to attempt it

@ NTNU | S oy Compiler Construction 24: Static single assignment

Redundancy elimination

« Common redundancy elimination optimizations are
 value numbering

» conditional constant propagation
* common-subexpression elimination (CSE)
 partial-redundancy elimination

orwestan University of _ _ o .
@ NTINU | S Tecimoioss Compiler Construction 24: Static single assignment

What they do

read (i) ; = 2; read (i) ;
] =1+ 1;] =1 % 2; 1L =2 *1+ 1;
k = 1i; k =i + 2; if (i>0) goto L1;
L=k + 1; i =1+ 1;
goto L2;
L1: k=2 * 4 * 1;
L2:
Value numbering Constant propagation Common subexpression
determines that determines that j== elimination (CSE)
j== determines that the

second “2*1” is redundant

@ NTNU | S oy Compiler Construction 24: Static single assignment 6

Value numbering

 Basic idea:

« associate a symbolic value to each computation, in a
way that any two computations with the same symbolic
value always compute the same value

@ NTNU | S oy Compiler Construction 24: Static single assignment

Congruence of expressions

* We define a notion of congruence of expressions:

« X ®Yyiscongruentto a ® b if ® and ® are the same
operator, and:

* X Is congruent to a
 and y is congruentto b
» Typically, we will also take commutativity into account

@ NTNU | S oy Compiler Construction 24: Static single assignment

Value numbering

e Suppose we have
e t1 = t2 + 1
* Look up the key “t2+1" in a hash table

« Use a hash function that assigns the same hash value
(ie, the same value number) to expressions el and e2 if
they are congruent

« Ifkey “t2+17is not in the table, then put it in with value “t1”

« the next time we hiton “t2+17, can replace it in the IR
with “t1”

@ NTNU | S oy Compiler Construction 24: Static single assignment 9

Example

i = vl
read(i); Hash(vl + 1) —j
A j = v2
= + .
L=k I kK = vl
Hash(vl + 1) — j
Therefore 1 = j
@ NTNU | S oy Compiler Construction 24: Static single assignment 10

Global value numbering

* Local (i.e. within a basic block) value numbering is easy
enough

« But what about global (i.e. within a procedure) value
numbering?

read(i);
=1+ 1;
k = = 1;
= k + 1,;

@ NTNU | S oy Compiler Construction 24: Static single assignment 11

Importance of use-def info

* In the global case we must watch out for multiple
assignments

« \We could do a data flow analysis to extend value
numbering to the global case

read (i) ;
j =1+ 1;
k = k = 1
1=k+1; /
\/

use-def analysis

@ N'TNU | Sy o Compiler Construction 24: Static single assignment 12

Science and Technology

Embedding use-def into the IR

« Use-def information is central to several important
optimizations

* The point of static single assignment form (SSA form) is
to represent use-def information explicitly

ead

n 1 w
+ —
[EEY

xS
e =d. ~

kl= ..; 2

N /S

1 = ¢(kl,k2) + 1,

@ NTNU | S oy Compiler Construction 24: Static single assignment 13

Scienc

SSA form

« Static single-assignment form arranges for every value
computed by a program to have a unique assignment (aka
“definition”)

« A procedure is in SSA form if every variable has (statically)
exactly one definition

« SSA form simplifies several important optimizations,
including various forms of redundancy elimination

@ NTNU | S oy Compiler Construction 24: Static single assignment 14

Example

entry entry

| \
z>1 ‘ z1 > 1

P x3 1= ®(x1,x2)
y:=x+1 z:=Xx-3 yli=xl+ 1 z2 :=x3-3
Xx:=4 x4 1= 4
J /
2 =y 4 7 z3 :=x4 +7
exit exit

@ NTNU | S oy Compiler Construction 24: Static single assignment 15

Value numbering in SSA

« In SSA form, if x and a are variables, they are congruent
only if they are both live and they are the same variable

« ...orif they are provably the same value (by constant or
copy propagation)

@ NTNU | S oy Compiler Construction 24: Static single assignment 16

Creating SSA form

 To translate into SSA form:

* Insert trivial ® functions at join points for each live
variable

e O(t,t,...,t),wherethe number of t’sis the
number of incoming flow edges

* Globally analyze and rename definitions and uses of
variables to establish SSA property

« After we are done with our optimizations, we can throw
away all of the statements involving ® functions
(i.e. “UnSSA”)

@ NTNU | S oy Compiler Construction 24: Static single assignment

17

Example

entry entry

|
z>1

X
Il
N

— |
N
|. -
V -
[

X T (D (x,X) yli=x1+ 1| [X3:= d(x1,x2)
z2:=®(z,2) 22 1= x3 - 3
zi=x-3 x4 1= 4
X:=4 4
L z3 :=x4 +7
Z:=X+7
@ NTNU | S oy Compiler Construction 24: Static single assignment 18

SSA form for general graphs

* An SSA form with the minimum number of ¢ functions can
be created by using dominance frontiers

 Definitions:

* In a flowgraph, node a dominates node b ("a dom b”)if
every possible execution path from entry to b includes a

« If 2 and b are different nodes, we say that a strictly
dominates b ("a sdom b”)

« If a sdom b, and there is no ¢ such that (a sdom c) and
(c sdom b), we say that a is the immediate dominator of
b ("a idom b")

@ NTNU | S oy Compiler Construction 24: Static single assignment 19

Dominance frontier

 For anode a, the dominance frontier of a, DF [a], is the set
of all nodes b such that a strictly dominates an immediate
precedessor of b but not b itself

* More formally:

DF[a] = {b | 4 ¢ € Pred(b) such that
a dom c butnota sdom b}

@ NTNU | S oy Compiler Construction 24: Static single assignment 20

Computing DF[a]
* A naive approach to computing DF [a] for all nodes a would

require quadratic time

 However, an approach that usually is linear time involves
cutting into parts:

« DFi[a] = {b e Succ(a)|idom(b)# a}
e DFy[a,c] ={beDF[c] |idom(c)=a A idom(b) # a }

* Then:
DF[a] =DFi[a] u U DFu[a,c]

ceG
(idom(c)=a)

@ NTNU | sanetandrecnoiogy

Compiler Construction 24: Static single assignment 21

DF computation, cont’d

« What we want, in the end, is the set of nodes that need ¢
functions, for each variable

 So we define DF [S], for a set of flow graph nodes S:

DF[S] = U DF[a]

aes

@ NTNU | S oy Compiler Construction 24: Static single assignment 22

lterated DF

* Then, the iterated dominance frontier is defined as follows:
* DF*[S] =Ilim(i—)DFi[S]
 where
« DFI[S] = DF[S]
« DFi*1[S] = DF[S U DFi[S]]

« If S is the set of nodes that assign to variable t, then
DF*[S U {entry}]is the set of nodes that need ® functions

for t

@ NTNU | S oy Compiler Construction 24: Static single assignment 23

Example

Bl

For Kk:
-DF1({entry,B1,B3}) = {B2}

-DFZ2({entry,B1,B3}) =
DF({entry,B1,B2,B3}) = {B2}

@ NTNU | sénes

rsity of
dT h ology

exit

Compiler Construction 24: Static single assignment

24

Example

entry For i
J "
k := false -DF!({entry,B1,B3,B6}) =
il (B2, exit}
,» -DF2({entry,B1,B3,B6}) =
Ji<=n|p2 DF({entry,B1,B2,B3,B6,exit})
/\ = {BZ,EXit}
-L =j*2 B3 k... | B4
= true
=i+ 1 /\
printj Il '=1 4+ 1
B5 \/ B6
exit

@ NTNU | ’S\lc?ere\rlwvsgfgdUTnel\c/ﬁg%g; Compiler Construction 24: Static single assignment 25

Example

For j:
alse -DF!({entry,B1,B3}) = {B2}

DFZ2({entry,B1,B3}) =
DF({entry,B1,B2,B3}) = {B2}

Bl

k.. | B4

print j =1+ 1

BS .~ B6

exit

(O] NTNU | Norwegian Lniver: itlggf’; Compiler Construction 24: Static single assignment 26

Example

So, ® nodes for i,
j, and k are
needed in B2, and
i also needs one in
exit
* exit ® nodes are
usually pruned

@ NTNU | sanetandrecnoiogy

entry
7
k1l := false
B1lil:=1
jl := 2
1
k3 := ®&(kl,k2)
Ji3 1= @(i1,i2) |2
j3 1= ®(j1,32)
i <=n
B3 . ———
j2 :1=3§3 * 2 ..k3...|B4
k2 := true /\
i2:=i3+1||printj3| |i4:=i3+1
| _5'5\/56
i5:= ®(i3,i4)
exit

Compiler Construction 24: Static single assignment

27

Other ways to get SSA

« Although computing iterated dominance frontiers will result
in the minimal SSA form, there are easier ways that work
well for simple languages

« Without knowing the details of your project, | would guess
that your translator always knows when it is creating a join
point and can keep track of the immediate dominator

* If so, it can also create the necessary ® nodes during
translation

@ NTNU | S oy Compiler Construction 24: Static single assignment 28

Summary

« SSA form has had a huge impact on compiler design

* Most modern production compilers use SSA form
(including, for example, gcc, suif, LLVM, hotspot, ...)

« Compiler frameworks (i.e. toolkits for creating compilers) all
use SSA form

* The advantages for simple compilers such as our VSL
compiler are low, so using SSA in our project is probably
too much overhead...

@ NTNU | S oy Compiler Construction 24: Static single assignment 29

