
Compiler Construction
Lecture 24: Static single assignment

Michael Engel

based on slides and lecture notes of Frank Pfenning (CMU)

Compiler Construction 24: Static single assignment 2

Static Single Assignment (SSA)
• In this lecture we introduce Static Single Assignment (SSA) form
• SSA is a way to structuring the intermediate representation so that

every variable is assigned exactly once
• This is formally equivalent to continuation-passing style (CPS) IR

• Proposed by Rosen, Wegman and Zadeck in 1988 [1]
• Algorithm to compute SSA form efficiently by Cytron, Ferrante,

Rosen, Wegman, and Zadeck at IBM in 1991 [2]

[1] Barry Rosen; Mark N. Wegman; F. Kenneth Zadeck (1988). "Global value
numbers and redundant computations". Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages

[2] Cytron, Ron; Ferrante, Jeanne; Rosen, Barry K.; Wegman, Mark N. & Zadeck, F.
Kenneth (1991). "Efficiently computing static single assignment form and the control
dependence graph". ACM Transactions on Programming Languages and Systems.
13 (4): 451–490

Compiler Construction 24: Static single assignment 3

Advantages of SSA
• Why do compiler writers use SSA?

• SSA form makes use-def chains explicit in the IR, which
in turn helps to simplify some optimizations

• Before getting into the details of SSA form, let’s look at
redundancy elimination as a motivating example
• Redundancy elimination optimizations attempt to

remove redundant computations

Compiler Construction 24: Static single assignment 4

Caution…
• SSA form is seductive

• The optimization benefits are real but not significant in
simple compilers (like yours)

• It looks easy but it isn’t

• My suggestion:
• Think about it but probably not wise to attempt it

Compiler Construction 24: Static single assignment 5

Redundancy elimination
• Common redundancy elimination optimizations are

• value numbering
• conditional constant propagation
• common-subexpression elimination (CSE)
• partial-redundancy elimination

Compiler Construction 24: Static single assignment 6

What they do

read(i);
j = i + 1;
k = i;
l = k + 1;

i = 2;
j = i * 2;
k = i + 2;

 read(i);
 l = 2 * i + i;
 if (i>0) goto L1;
 i = i + 1;
 goto L2;
L1: k = 2 * i * l;
L2:

Value numbering
determines that
j==l

Constant propagation
determines that j==k

Common subexpression
elimination (CSE)
determines that the
second “2*i” is redundant

Compiler Construction 24: Static single assignment 7

Value numbering
• Basic idea:

• associate a symbolic value to each computation, in a
way that any two computations with the same symbolic
value always compute the same value

Compiler Construction 24: Static single assignment 8

Congruence of expressions
• We define a notion of congruence of expressions:

• x ⊕ y is congruent to a ⊗ b if ⊕ and ⊗ are the same
operator, and:
• x is congruent to a
• and y is congruent to b

• Typically, we will also take commutativity into account

Compiler Construction 24: Static single assignment 9

Value numbering
• Suppose we have

• t1 = t2 + 1
• Look up the key “t2+1” in a hash table

• Use a hash function that assigns the same hash value
(ie, the same value number) to expressions e1 and e2 if
they are congruent

• If key “t2+1” is not in the table, then put it in with value “t1”
• the next time we hit on “t2+1”, can replace it in the IR

with “t1”

Compiler Construction 24: Static single assignment 10

Example

read(i);
j = i + 1;
k = i;
l = k + 1;

i = v1
Hash(v1 + 1) → j

j = v2

k = v1
Hash(v1 + 1) → j

Therefore l = j

Compiler Construction 24: Static single assignment 11

Global value numbering
• Local (i.e. within a basic block) value numbering is easy

enough
• But what about global (i.e. within a procedure) value

numbering?

k = …;

read(i);
j = i + 1;
k = i;

l = k + 1;

Compiler Construction 24: Static single assignment 12

Importance of use-def info
• In the global case we must watch out for multiple

assignments
• We could do a data flow analysis to extend value

numbering to the global case

k = …;

read(i);
j = i + 1;
k = i;

l = k + 1;

use-def analysis

Compiler Construction 24: Static single assignment 13

Embedding use-def into the IR
• Use-def information is central to several important

optimizations
• The point of static single assignment form (SSA form) is

to represent use-def information explicitly

k1= …;

read(i);
j = i + 1;
k2= i;

l = φ(k1,k2) + 1;

Compiler Construction 24: Static single assignment 14

SSA form
• Static single-assignment form arranges for every value

computed by a program to have a unique assignment (aka
“definition”)

• A procedure is in SSA form if every variable has (statically)
exactly one definition

• SSA form simplifies several important optimizations,
including various forms of redundancy elimination

Compiler Construction 24: Static single assignment 15

ExampleExample

entry

z > 1

x := 1
z > 2

x := 2

y := x + 1 z := x - 3
x := 4

z := x + 7

exit

entry

z1 > 1

x1 := 1
z1 > 2

x2 := 2

y1 := x1 + 1 x3 := Φ(x1,x2)
z2 := x3 - 3
x4 := 4

z3 := x4 + 7

exit

Compiler Construction 24: Static single assignment 16

Value numbering in SSA
• In SSA form, if x and a are variables, they are congruent

only if they are both live and they are the same variable
• …or if they are provably the same value (by constant or

copy propagation)

Compiler Construction 24: Static single assignment 17

Creating SSA form
• To translate into SSA form:

• Insert trivial Φ functions at join points for each live
variable
• Φ(t,t,...,t), where the number of t’s is the

number of incoming flow edges
• Globally analyze and rename definitions and uses of

variables to establish SSA property
• After we are done with our optimizations, we can throw

away all of the statements involving Φ functions
(i.e. “unSSA”)

Compiler Construction 24: Static single assignment 18

ExampleExample

entry

z > 1

x := 1
z > 2

x := 2

y := x + 1
x := Φ (x,x)
z := Φ (z,z)
z := x - 3
x := 4

z := x + 7

exit

entry

z1 > 1

x1 := 1
z1 > 2

x2 := 2

y1 := x1 + 1 x3 := Φ(x1,x2)
z2 := x3 - 3
x4 := 4

z3 := x4 + 7

exit

Compiler Construction 24: Static single assignment 19

SSA form for general graphs
• An SSA form with the minimum number of Φ functions can

be created by using dominance frontiers
• Definitions:

• In a flowgraph, node a dominates node b (“a dom b”) if
every possible execution path from entry to b includes a

• If a and b are different nodes, we say that a strictly
dominates b (“a sdom b”)

• If a sdom b, and there is no c such that (a sdom c) and
(c sdom b), we say that a is the immediate dominator of
b (“a idom b”)

Compiler Construction 24: Static single assignment 20

Dominance frontier
• For a node a, the dominance frontier of a, DF[a], is the set

of all nodes b such that a strictly dominates an immediate
precedessor of b but not b itself

• More formally:

 DF[a] = {b | ∃ c ∈ Pred(b) such that
 a dom c but not a sdom b}

Compiler Construction 24: Static single assignment 21

Computing DF[a]
• A naïve approach to computing DF[a] for all nodes a would

require quadratic time
• However, an approach that usually is linear time involves

cutting into parts:
• DFl[a] = { b ∈ Succ(a) | idom(b) ≠ a }
• DFu[a,c] = { b ∈ DF[c] | idom(c)=a ∧ idom(b) ≠ a }

• Then:

DF[a] = DFl[a] ∪ ∪ DFu[a,c]
c∈G

(idom(c)=a)

Compiler Construction 24: Static single assignment 22

DF computation, cont’d
• What we want, in the end, is the set of nodes that need Φ

functions, for each variable

• So we define DF[S], for a set of flow graph nodes S:

DF[S] = ∪ DF[a]
a ∈ S

Compiler Construction 24: Static single assignment 23

Iterated DF
• Then, the iterated dominance frontier is defined as follows:

• DF+[S] = lim(i→∞) DFi[S]
• where

• DF1[S] = DF[S]
• DFi+1[S] = DF[S ∪ DFi[S]]

• If S is the set of nodes that assign to variable t, then
DF+[S ∪ {entry}] is the set of nodes that need Φ functions
for t

Compiler Construction 24: Static single assignment 24

ExampleExample

entry

k := false
i := 1
j := 2

i <= n

j := j * 2
k := true
i := i + 1

…k…

print j i := i + 1

exit

For k:

• DF1({entry,B1,B3}) = {B2}

• DF2({entry,B1,B3}) =
 DF({entry,B1,B2,B3}) = {B2}

B1

B2

B3
B4

B5 B6

Compiler Construction 24: Static single assignment 25

ExampleExample

entry

k := false
i := 1
j := 2

i <= n

j := j * 2
k := true
i := i + 1

…k…

print j i := i + 1

exit

For i:

• DF1({entry,B1,B3,B6}) =
 {B2,exit}

• DF2({entry,B1,B3,B6}) =
 DF({entry,B1,B2,B3,B6,exit})
 = {B2,exit}

B1

B2

B3
B4

B5 B6

Compiler Construction 24: Static single assignment 26

ExampleExample

For j:

• DF1({entry,B1,B3}) = {B2}

• DF2({entry,B1,B3}) =
 DF({entry,B1,B2,B3}) = {B2}

entry

k := false
i := 1
j := 2

i <= n

j := j * 2
k := true
i := i + 1

…k…

print j i := i + 1

exit

B1

B2

B3
B4

B5 B6

Compiler Construction 24: Static single assignment 27

Example
Example, cont’d

So, Φ nodes for i,
 j, and k are
 needed in B2, and
 i also needs one in
 exit

• exit Φ nodes are
 usually pruned

entry

k1 := false
i1 := 1
j1 := 2

k3 := Φ(k1,k2)
i3 := Φ(i1,i2)
j3 := Φ(j1,j2)
i <= n

j2 := j3 * 2
k2 := true
i2 := i3 + 1

…k3…

print j3 i4 := i3 + 1

i5 := Φ(i3,i4)
exit

B1

B2

B3
B4

B5 B6

Compiler Construction 24: Static single assignment 28

Other ways to get SSA
• Although computing iterated dominance frontiers will result

in the minimal SSA form, there are easier ways that work
well for simple languages

• Without knowing the details of your project, I would guess
that your translator always knows when it is creating a join
point and can keep track of the immediate dominator

• If so, it can also create the necessary Φ nodes during
translation

Compiler Construction 24: Static single assignment 29

Summary
• SSA form has had a huge impact on compiler design

• Most modern production compilers use SSA form
(including, for example, gcc, suif, LLVM, hotspot, ...)

• Compiler frameworks (i.e. toolkits for creating compilers) all
use SSA form

• The advantages for simple compilers such as our VSL
compiler are low, so using SSA in our project is probably
too much overhead…

