
Compiler Construction
Lecture 21 part 1: Available expressions analysis

Michael Engel

Compiler Construction 21 part 1: Available expressions 2

Overview
• Data-flow analyses

• Global properties of expressions
• Expressions and availability
• Semantic vs. syntactic analysis
• Available expressions analysis

Compiler Construction 21 part 1: Available expressions 3

Discovering global properties of expressions

• We look at analyses for eliminating redundant
computations of expressions

• Programs may contain code whose result is needed, but in
which some computation is simply a redundant repetition of
earlier computation within the same program

• Our first analysis – available expressions – involves
replacing an expression by its precomputed value:
• Given a program point u, this analysis discovers the

expressions whose results at u are same as the their
previously computed values regardless of the execution
path taken to reach u

Compiler Construction 21 part 1: Available expressions 4

Expressions and availability
• Any given program contains a finite number of expressions

(i.e. computations which potentially produce values), so we
may talk about the set of all expressions of a program:

int z = x * y;
print s + t;
int w = u / v;

program contains  
expressions

{x*y, s+t, u/v}

• Availability is a data-flow property of expressions:
“Has the value of this expression already been computed?”

int z = x * y;

? ? ?

Compiler Construction 21 part 1: Available expressions 5

Availability
• At each instruction, each expression in the programis either

available or unavailable
• We consider availability from an instruction’s perspective:

each instruction (or node of the CFG) has an associated
set of available expressions:

int z = x * y;
print s + t;
int w = u / v;

• This is all familiar from live variable analysis
• Expression availability and variable liveness share many similarities

• both are simple data-flow properties
• however, they do differ in important ways

avail(n)={x*y, s+t}n:

Compiler Construction 21 part 1: Available expressions 6

Semantic vs. syntactic analysis
• Availability differs from earlier examples in a subtle but important

way:
• we want to know which expressions are definitely available

(i.e. have already been computed) at an instruction, not
which ones may be available

• An expression is semantically available at a node n if its value
gets computed (and not subsequently invalidated) along every
execution sequence ending at n

int x = y * z;
 :
return y * z;

int x = y * z;
 :
y = a + b;
 :
return y * z;y*z available

y*z unavailable

y invalidated here

Compiler Construction 21 part 1: Available expressions 7

Semantic vs. syntactic analysis
• An expression is syntactically available at a node n if its value

gets computed (and not subsequently invalidated) along every
path from the entry of the CFG to n
• semantic availability: execution behaviour of the program
• syntactic availability: program’s syntactic structure

if ((x+1)*(x+1) == y) {
 s = x + y;
}
if (x*x + 2*x + 1 != y) {
 t = x + y;
}
return x + y; // x+y available

Semantically:  
one of the conditions will be
true, so on every execution
path x+y is computed twice

⇒ the recomputation of x+y  
 is redundant

Compiler Construction 21 part 1: Available expressions 8

Semantic vs. syntactic analysis
Translation to IR representation: if ((x+1)*(x+1) == y) {

 s = x + y;
}
if (x*x + 2*x + 1 != y) {
 t = x + y;
}
return x + y;

On the red path through  
the flowgraph, x+y is never
computed, so x+y is
syntactically unavailable  
at the last instruction

Note that this red path  
never actually occurs  
during execution

ADD t32,x,#1
MUL t33,t32,t32
CMP t33,y

MUL t34,x,x
MUL t35,x,#2
ADD t36,t34,t35
ADD t37,t36,#1
CMP t37,y

ADD res1,x,y

ADD s,x,y

ADD t,x,y

t33!=y

t33!=y

t33==y

t33==y

x+y unavailable

Compiler Construction 21 part 1: Available expressions 9

Semantic vs. syntactic analysis
• If an expression is deemed to be available, we may do

something dangerous (e.g. remove an instruction which
recomputes its value)

• In contrast, with live variable analysis we found safety in
assuming that more variables were live, here we find safety in
assuming that fewer expressions are available

all program expressions

semantically available at n semantically unavailable at n

syntactically
available at n

imprecision
of analysis

Compiler Construction 21 part 1: Available expressions 10

Available expression analysis

• Available expressions is a forward data-flow analysis:
information from past instructions must be propagated forward
through the program to discover which expressions are available

• Unlike variable liveness, expression availability flows forwards
through the program

• As in liveness, each instruction has an effect on the availability
information as it flows past

print x * y;
t = x * y;

if (x * y > 0)

int z = x * y;

Compiler Construction 21 part 1: Available expressions 11

Available expression analysis

• An instruction makes an expression available when it generates
(computes) its current value

print a*b;

c = d+1;

e = f/g;

{}

{a*b}

{a*b,d+1}

{a*b,d+1,f/g}

// Generate a*b

// Generate d+1

// Generate f/g

Compiler Construction 21 part 1: Available expressions 12

Available expression analysis

• An instruction makes an expression unavailable when it kills
(invalidates) its current value

a=7;

c=11;

d=13;

{a*b,c+1,d/e,d-1}

{c+1,d/e,d-1}

{d/e,d-1}

{}

// Kill a*b

// Kill c+1

// Kill d/e,d-1

Compiler Construction 21 part 1: Available expressions 13

Available expression analysis

• As in LVA, we can devise functions Genn and Killn which give the
sets of expressions generated and killed by the instruction at node n

• The situation is slightly more complicated here:
an assignment to a variable x kills all expressions in the program
which contain occurrences of x

• In the following, Ex is the set of expressions in the program which
contain occurrences of x:

Gen(x=3) = {}

Kill(x=3) = Ex

Gen(print x+1) = {x+1}

Kill(print x+1) = {}

Gen(x=x+y) = {x+y}

Kill(x=x+y) = Ex

Compiler Construction 21 part 1: Available expressions 14

Available expression analysis

• As availability flows forwards past an instruction, we want to
modify the availability information by adding any expressions
which it generates (they become available) and removing any
which it kills (they become unavailable)

Kill(x=3) = ExGen(print x+1) = {x+1}

{y+1}

{x+1,y+1}

{x+1,y+1}

{y+1}

Compiler Construction 21 part 1: Available expressions 15

Available expression analysis

• If an instruction both generates and kills expressions, we must
remove the killed expressions after adding the generated ones

Kill(x=x+y) = Ex

Gen(x=x+y) = {x+y}
{x+1,y+1}

{y+1}

x = x+y;

• If we consider in-avail(n) and out-avail(n), the sets of
expressions which are available immediately before and
immediately after a node, the following equation must hold:

out-avail(n) = (in-avail(n) ∪ gen(n)) - kill(n)

Compiler Construction 21 part 1: Available expressions 16

Available expression analysis

in-avail(n) = {x+1,y+1}

out-avail(n) = (in-avail(n) ∪ gen(n)) - kill(n)
 = ({x+1,y+1} ∪ {x+y}) - {x+1,x+y}
 = {x+1,y+1,x+y} - {x+1,x+y}
 = {y+1}

x = x+y;

out-avail(n) = (in-avail(n) ∪ gen(n)) - kill(n)

n:

Killn = {x+1,x+y}Genn = {x+y}

Compiler Construction 21 part 1: Available expressions 17

Available expression: joined control flow

• When a node n has a single predecessor m, information propagates
along the CFG edge as you expected: in-avail(n) = out-avail(m)

• When a node has multiple predecessors, the expressions available at
the entry of that node are exactly those expressions available at the
exit of all of its predecessors (cf. “any of its successors” in LVA)

{x+5}
z = x*y;m: n:

{x+5}

{x+5,x*y}

…

{y-7}
print x*y;

{y-7}

{x*y,y-7}

…

x = 11;

y = 13;

{x*y}

{}

{}

{x+5,x*y} ∩ {x*y,y-7}
= {x*y}

Compiler Construction 21 part 1: Available expressions 18

Data-flow equations

• The data-flow equations for available expression analysis
tell us everything we need to know about how to propagate
availability information through a program:

 in-avail(n) = ∩ out-avail(p)

 out-avail(n) = (in-avail(n) ∪ Genn) - Killn

• Each is expressed in terms of the other, so we can combine
them to create one overall availability equation:

 avail(n) = ∩ (avail(p) ∪ Genn) - Killn

p∈pred(n)

p∈pred(n)

Compiler Construction 21 part 1: Available expressions 19

Available expressions equations
• An expression e ∈ Expr is available at a program point u if

all paths from Start to u contain a computation of e which is
not followed by an assignment to any of its operands

• The data flow equations to define the analysis are:
 BI if n is Start block

 ∩ Outp otherwise

 Outn = (Inn−Killn) ∪ Genn
 where Inn, Outn, Genn, Killn, and BI are sets of definitions
• Note the use of ∩ to capture the “any path” nature of data flow

• This is different to liveness and reaching def. analysis
• The direction of data flow is forward like in reaching def.

p∈pred(n)

Inn =

Compiler Construction 21 part 1: Available expressions 20

Use: common subexpression elimination

• Optimization that searches for instances of identical
expressions

• i.e. all evaluate to the same value
• Analyzes whether it is worthwhile replacing the instances
with a single variable holding the computed value

• Example:
 a = b * c + g;
 d = b * c * e;

• can be transformed into:
 tmp = b * c;
 a = tmp + g;
 d = tmp * e;

