
Compiler Construction
Lecture 19 part 1: Data flow analyses – Overview

Michael Engel

Compiler Construction 19–1: Data flow analyses 2

Classical bit-vector data-flow analyses
• Origins of data flow analysis were the so-called “bit vector”

data flow frameworks [1]
• called “bit vector” since data flow and additional

information are represented using bit vectors
• the analysis can be performed using bit vector

operations alone
• There are forms of data flow which require additional

operations for performing analyses
• the data flow information itself is still represented using

bit vectors
• we make this notion more precise later with the help of

the examples presented here

Compiler Construction 19–1: Data flow analyses 3

Bit vectors as set representations
• Using bit vectors enables an

efficient implementation of sets
• Example: set with 32 elements

• The presence or absence of
each element is represented
by a specific bit set to 1 or 0,
respectively

• Representation of variables
c,d,x,y,z as 5 bit set:

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

{c,d,x,y,z}

{c,d,x,y}

{c,d,x,y,z}
{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,y}

{c,d,x,y}
{c,d,y,z}
{c,d,x,y,z}
{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

1 0 1 1 0

Bit: 0 1 2 3 4

Variable: c d x y z

⇒ {c,x,y}

Compiler Construction 19–1: Data flow analyses 4

Bit vectors as set representations
• We can use bit vectors to

represent the sets of live
variables at the program points
of the example in lecture 17

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

11111

11110

11111
11111

11111
11110
11110
11011
11111
11111
11101
11011

1 0 1 1 0

Bit: 0 1 2 3 4

Variable: c d x y z

⇒ {c,x,y}

efficient as long as the number of
elements fits in a machine word

Compiler Construction 19–1: Data flow analyses 5

Set operations on bit vectors
• Typical set operations can now be implemented using

boolean logic operators
• Example: union (join) of two sets (∪) using OR:

1 0 1 1 0

Variable: c d x y z

⇒ {c,x,y}

0 0 1 0 1 ⇒ {x,z}

1 0 1 1 1 ⇒ {c,x,y,z}={c,x,y}∪{x,z}

OR

• The set property that each element may only occur once in
a set is guaranteed by mapping set elements to bits

Compiler Construction 19–1: Data flow analyses 6

Set operations on bit vectors
• Typical set operations can now be implemented using

boolean logic operators
• Example: intersection (meet) of two sets (∩) using AND:

1 0 1 1 0

Variable: c d x y z

⇒ {c,x,y}

1 0 0 1 1 ⇒ {c,y,z}

1 0 0 1 0 ⇒ {c,y} = {c,x,y}∩{c,y,z}

AND

• Set complement can be implemented using XOR

Compiler Construction 19–1: Data flow analyses

3

7

Bit vectors to represent graphs
• We can also use bit vectors to represent graphs (e.g. CFG)
• Bit vectors can represent a graph’s adjacency matrix

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

1

2

3

4

5

1

2

4

5

0 1 0 0 1

 Basic Block 1 2 3 4 5

1

0 0 1 1 02

0 0 0 1 03

1 0 0 0 04

0 0 0 0 05

(i,j)=1
⇒ edge from node i to j

j

i

Compiler Construction 19–1: Data flow analyses 8

Properties of CFGs

• Edges in CFGs denote predecessor and
successor relationships

• For an edge n1→n2:
• n1 is a predecessor of n2 (n1=pred(n2))
• n2 is a successor of n1 (n2=succ(n1))

• CFG has two distinguished unique nodes:
• Start which has no predecessor
• End which has no successor

• Every basic block n is reachable from the
Start block and the End block is
reachable from n

y=x

y=0

1

6

z=1

if (y>1)

z=z*y

y=y-1

2

3

4

5

Start

End

Compiler Construction 19–1: Data flow analyses 9

Overview of data-flow analyses
• Data flow analysis views computation of data through

expressions and transition of data through assignments to
variables

• Properties of programs are defined in terms of properties of
program entities such as expressions, variables, and
definitions appearing in a program
• we restrict expressions to primitive expressions

involving a single operator
• variables are restricted to scalar variables and

definitions are restricted to assignments made to scalar
variables
(let’s keep it moderately simple…)

Compiler Construction 19–1: Data flow analyses 10

General approach
• For a given program entity such as an expression, data flow

analysis of a program involves the following two steps
• (a) discovering the effect of individual statements on the

expression, and
• (b) relating these effects across statements in the

program
• For reasons of efficiency, both steps are often carried over

a basic block instead of a single statement
• Step (a) is called local data flow analysis and is performed

for a basic block only once
• Step (b) constitutes global data flow analysis and may

require repeated traversals over basic blocks in a CFG
"global" here means:

inside a single procedure!

Compiler Construction 19–1: Data flow analyses 11

Discovering local data flow information

111111

• The modelling of the effect of a statement varies between
different analyses

• However, there is a common pattern of generation of data
flow information or invalidation of data flow information

Entity Operations

Variable x Reading the value
of x (use)

Modifying the value
of x

Expression e Computing e Modifying an operand
of e

Definition di:x=e Occurence of di
Any definition

of x

Compiler Construction 19–1: Data flow analyses 12

Entities and operations

121212

• A variable may be used or an expression may be computed
(a) in the right hand side of an assignment statement,
(b) in a condition for altering the control flow,
(c) as an actual parameter in a function call, or
(d) as a return value from a function

• All other operations involve an assignment statement to a
relevant variable

• Note that reading a value
of a variable from input can
be safely considered as an
assignment statement
assigning an unknown
value to the variable

Entity Operations

Variable x Reading the value
of x (use)

Modifying the
value of x

Expression e Computing e Modifying an
operand of e

Definition di:x=e Occurence of di
Any definition

of x

Compiler Construction 19–1: Data flow analyses 13

Relationship of CFG information

• The relationship between local and
global data flow information for a
block and between global data flow
information across different blocks is
captured by data flow equations

• this is a system of linear
simultaneous equations

• In general, these equations have
multiple solutions

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

Compiler Construction 19–1: Data flow analyses 14

Data flow equations

• In forward flow analysis, the exit state of a basic block b is a function
(data flow equation) of the block's entry state: Outb = transb(Inb)

• composition of the effects of the statements in the block
• transb is the transition function of block b

• The entry state of a basic block is a function (data flow equation) of
the exit states of its predecessors: Inb = joinp∈pred(b)(Outp)

• The join operation joinp∈pred(n) combines the exit states of all
predecessors p of b, yielding the entry state of b

141414

…

x=a
Block1

… …In1

Out1

B1 B2

B3
∪Out1 Out2

In3

Compiler Construction 19–1: Data flow analyses 15

Data-flow analysis directions

Each type of data-flow analysis has a specific
transfer function and join operation

Forward analyses traverse the CFG along the
direction of the control flow
• e.g. reaching definitions, available expressions
Backward analyses traverse the CFG against the
direction of the control flow
• e.g. live variables analysis, very busy expressions
• Here, the transfer function is applied to the exit

state yielding the entry state
• the join operation works on the entry states of

the successors to yield the exit state

trans1(In1)
B1

In1

Out1

trans1(In1)
B1

In1

Out1

Compiler Construction 19–1: Data flow analyses 16

Bit vector analysis: Gen and Kill sets
Bit vector dataflow analyses works on sets of facts

• these sets can be represented efficiently as bit vectors
• Join and transfer functions are implemented as logical bitwise ops

• join is typically ∪ or ∩, implemented by logical or / logical and

• transfer functions can be decomposed into Gen and Kill sets

• Gen: points in the graph where a fact you care about becomes true
• Genb describes data flow info. generated within block b

• Kill: points in the graph where a fact you care about becomes false
• Killb describes data flow inf. which becomes invalid in block b

• Genb and Killb points thus depend on the facts you care about

161616

Compiler Construction 19–1: Data flow analyses 17

Example: gen and kill sets

171717

• Example: in live-variable analysis, the join operation is union
• Kill set: variables that are written in a block
• Gen set: variables that are read without being written first
• The related data-flow equations are thus:

 Outb = ∪ Ins Inb = (Outb - Killb) ∪Genb

 s∈succ(b)

• In logical operations: out(b) = 0 // empty set
for s in succ(b) {
 out(b) = out(b) or in(s)
}
in(b) = (out(b) and not kill(b))
 or gen(b)

Compiler Construction 19–1: Data flow analyses 18

References

[1] Uday P. Khedker, Amitabha Sanyal, Bageshri Karkare. Data Flow Analysis: Theory and
Practice. CRC Press, 2009 (Chapter 2, Classical Bit Vector Data Flow Analysis)
[2] Flemming Nielson, Hanne Riis Nielson, Chris Hankin. Principles of Program Analysis.
Springer, 2nd edition, 2005 (Chapter 2, Data Flow Analysis)
[3] Robert Morgan. Building an Optimizing Compiler. Digital Press, 1998 (Chapter 4.12, Global
Available Temporary Information)
[4] Gary Kildall. A Unified Approach to Global Program Optimization. Proceedings of the 1st
ACM Symposium on Principles of Programming Languages (POPL), 1973

