B NTNU | sioncindrecnoivay

Compiler Construction
Lecture 19 part 1: Data flow analyses — Overview

Michael Engel

Classical bit-vector data-flow analyses

- Origins of data flow analysis were the so-called “bit vector”
data flow frameworks [1]

o called “bit vector” since data flow and additional
information are represented using bit vectors

 the analysis can be performed using bit vector
operations alone

* There are forms of data flow which require additional
operations for performing analyses

 the data flow information itself is still represented using
bit vectors

« we make this notion more precise later with the help of
the examples presented here

@ NTNU | S oy Compiler Construction 19—1: Data flow analyses 2

Bit vectors as set representations

« Using bit vectors enables an
efficient implementation of sets

 Example: set with 32 elements

 The presence or absence of
each element is represented

by a specific bit set to 1 or O,

respectively

* Representation of variables
c,d,x,y,z as 5 bit set:

Bit: 0 2 3 4
lnlln = {e.xy}
Variable: c

{c,d,x,y,z}

{e,d,x,y,z}

{C1d1Y!Z}
{c,d,x,z}
{c,d,x,y,z}

{ec,d,x,y,z}
{c,d,y,z}
{e,d,x,y}
{c,d,x,y}

{c,d,x,y,z}
{ec,d,x,y}

{c,d,x,y,z}

@ NTNU | S oy Compiler Construction 19—1: Data flow analyses 3

Bit vectors as set representations

 We can use bit vectors to
represent the sets of live
variables at the program points
of the example in lecture 17

efficient as long as the number of
elements fits in a machine word

Bit: 0 2 3 4
lnlln = {e.xy}
Variable: c

11111

11111
11011

11101
11111

11111
11011

11110
11110

11111
11110

11111

@ NTNU | S oy Compiler Construction 19—1: Data flow analyses

Set operations on bit vectors

 Typical set operations can now be implemented using
boolean logic operators

« Example: union (join) of two sets (U) using OR:

Variable: c

BoaEa- -
o~ IOEOE- o

.n...: {e,x,y, z} {c x,y}U{x z}

* The set property that each element may only occur once in
a set Is guaranteed by mapping set elements to bits

@ NTNU | S oy Compiler Construction 19—1: Data flow analyses 5

Set operations on bit vectors

 Typical set operations can now be implemented using
boolean logic operators

« Example: intersection (meet) of two sets (1) using AND:

Variable: c

o] |-
AND .nn.. = {c Y, z}

.nn.n=> {c y} {c X, y}ﬂ{c Y, z}

« Set complement can be implemented using XOR

@ NTNU | S oy Compiler Construction 19—1: Data flow analyses

Bit vectors to represent graphs

 We can also use bit vectors to represent graphs (e.g. CFG)
» Bit vectors can represent a graph’s adjacency matrix

i)=1
= edge from node i to)

Basic Block 1

~nlnnl
>

' ﬂﬂﬂﬂﬂ

@ NTNU | S oy Compiler Construction 19—1: Data flow analyses

Properties of CFGs

« Edges in CFGs denote predecessor and
successor relationships

* For an edge n1—n2: ~—————— 1 Start
y=X
*nlis a predecessor of n2 (nl=pred(n2)) | ,
*n2 is a successor of nl1 (n2=succ(nl)) 2=t

« CFG has two distinguished unique nodes: P if (y>1)

* Start which has no predecessor R— A
* End which has no successor , 5

» Every basic block n is reachable from the yv2
Start block and the End block is 6 |
reachable from n L E:;O i+

@ NTNU | S oy Compiler Construction 19—1: Data flow analyses 8

Overview of data-flow analyses

« Data flow analysis views computation of data through
expressions and transition of data through assignments to
variables

* Properties of programs are defined in terms of properties of
program entities such as expressions, variables, and
definitions appearing in a program

* we restrict expressions to primitive expressions
Involving a single operator

e variables are restricted to scalar variables and
definitions are restricted to assignments made to scalar
variables
(let's keep it moderately simple...)

@ NTNU | S oy Compiler Construction 19—1: Data flow analyses 9

General approach

For a given program entity such as an expression, data flow
analysis of a program involves the following two steps

* (a) discovering the effect of individual statements on the
expression, and

* (b) relating these effects across statements in the
program
For reasons of efficiency, both steps are often carried over
a basic block instead of a single statement

Step (a) is called local data flow analysis and is performed
for a basic block only once

Step (b) constitutes global data flow analysis and may
require repeated traversals over basic blocks in a CFG

"global" here means:
inside a single procedure!

N ian Uni i f .
@ NTINU | S Tecimoioss Compileteorstrataor Ty=T Uata ow analyses 10

Discovering local data flow information

* The modelling of the effect of a statement varies between
different analyses

* However, there is a common pattern of generation of data
flow information or invalidation of data flow information

Entity Operations
' Reading the value Modifying the value
Variable x of x (use) o
Expression e Computing e MOd'fY'”QO?Z operand
Definition ds:x=e Occurence of d; Any C:)?f)l(nltlon

@ NTNU | S oy Compiler Construction 19—1: Data flow analyses 11

Entities and operations

* A variable may be used or an expression may be computed
(a) in the right hand side of an assignment statement,
(b) in a condition for altering the control flow,
(c) as an actual parameter in a function call, or
(d) as a return value from a function

* All other operations involve an assignment statement to a
relevant variable
Entity Operations

* Note that reading a value Variable x Reading the value Modifying the
of a variable from input can of x (use) value of x
be safely considered as an Modifying an
assignment statement operand of e

assigning an un_known Definition di:x=e Occurence of di
value to the variable

Expression e Computing e

Any definition
of x

@ NTNU | S oy Compiler Construction 19—1: Data flow analyses 12

Relationship of CFG information

* The relationship between local and
global data flow information for a
block and between global data flow

information across different blocks is B if (o
captured by data flow equations

* this is a system of linear
simultaneous equations

* In general, these equations have
multiple solutions

@ NTNU | S oy Compiler Construction 19—1: Data flow analyses

13

Data flow equations

Bl | B2

*Inl

; ' Blockl - -

H X=a Out]_ 0utz
%Outl In; - % B3

ns3 ‘;

L

* In forward flow analysis, the exit state of a basic block b is a function
(data flow equation) of the block's entry state: Out, = transp(Ing)

« composition of the effects of the statements in the block
* transy is the transition function of block b

* The entry state of a basic block is a function (data flow equation) of
the exit states of its predecessors: Iny = joiNpepreap)(Outy)

 The join operation joinpepredin) cOMbines the exit states of all
predecessors p of b, yielding the entry state of b

@ NTNU | S oy Compiler Construction 19—1: Data flow analyses 14

Data-flow analysis directions

Each type of data-flow analysis has a specific
transfer function and join operation

_ In;

Forward analyses traverse the CFG along the ﬂ tr.ansl» (Ina)
direction of the control flow H %0“1

* e.g. reaching definitions, available expressions

Backward analyses traverse the CFG against the
direction of the control flow

* e.g. live variables analysis, very busy expressions A*Im

* Here, the transfer function is applied to the exit
state yielding the entry state

* the join operation works on the entry states of
the successors to yield the exit state

Bl

Bl

ﬂ tran51 (Ini)

$Out1

@ NTNU | S oy Compiler Construction 19—1: Data flow analyses

15

Bit vector analysis: Gen and Kill sets

Bit vector dataflow analyses works on sets of facts
 these sets can be represented efficiently as bit vectors
 Join and transfer functions are implemented as logical bitwise ops

« join is typically U or N, implemented by logical or / logical and

* transfer functions can be decomposed into Gen and Kill sets

« Gen: points in the graph where a fact you care about becomes true
» Genp describes data flow info. generated within block b

* Kill: points in the graph where a fact you care about becomes false
* Kill, describes data flow inf. which becomes invalid in block b
» Genyp and Killp points thus depend on the facts you care about

@ NTNU | S oy Compiler Construction 19—1: Data flow analyses 16

Example: gen and Kill sets

« Example: in live-variable analysis, the join operation is union
* Kill set: variables that are written in a block

* Gen set: variables that are read without being written first

* The related data-flow equations are thus:

Outy, = U Ins Inp = (Outs - Killp) UGenp
Sesucc(b)
* In logical operations: out(b) = 0 // empty set

for s in suce(b) {
out(b) = out(b) or in(s)
}

in(b) = (out(b) and not kill(b))
or gen(b)

@ NTNU | S oy Compiler Construction 19—1: Data flow analyses 17

References

[1] Uday P. Khedker, Amitabha Sanyal, Bageshri Karkare. Data Flow Analysis: Theory and
Practice. CRC Press, 2009 (Chapter 2, Classical Bit Vector Data Flow Analysis)

[2] Flemming Nielson, Hanne Riis Nielson, Chris Hankin. Principles of Program Analysis.
Springer, 2nd edition, 2005 (Chapter 2, Data Flow Analysis)

[3] Robert Morgan. Building an Optimizing Compiler. Digital Press, 1998 (Chapter 4.12, Global
Available Temporary Information)

[4] Gary Kildall. A Unified Approach to Global Program Optimization. Proceedings of the 1st
ACM Symposium on Principles of Programming Languages (POPL), 1973

@ NTNU | S oy Compiler Construction 19—1: Data flow analyses 18

