
Compiler Construction
Lecture 17: Optimizations in detail

Michael Engel

Compiler Construction 17: Optimizations in detail 2

Overview
• Optimizations

• Control-flow graphs
• Liveness of variables

Compiler Construction 17: Optimizations in detail 3

Optimization

• We wish to apply various program transformations to improve its
non-functional properties without changing its meaning

• Transformations can apply either at IR or lower levels

• Optimizations have to be safe
• the optimized program must give the same results as the

un-optimized program for every possible execution

• We need some structured approaches to ensure this…

Compiler Construction 17: Optimizations in detail 4

The meaning of programs

• Information required for performing optimizations often is not
explicitly contained in the source code

• So we have to extract information

• Consider the following code:

• Are all these statements necessary?

x = y + 1;

y = 2 * z;

x = y + z;

z = 1;

z = x;

Compiler Construction 17: Optimizations in detail 5

Program meaning is implicit

• Some of the statements are dead code

• Knowing this, we can construct a shorter identical program

• Control flow is linear here, so the dead state is obvious
• It becomes harder to tell when control flow is involved

x = y + 1; ← This assignment of x
y = 2 * z; ← …is not used in any intermediate statement…
x = y + z; ← …until x is assigned again here
z = 1; ← This assignment of z…
z = x; ← …is immediately overwritten

y = 2 * z;

x = y + z;

z = x;

Compiler Construction 17: Optimizations in detail 6

Conditions complicate everything

• If we add some control flow…

• …the first assignment to x may or may not be used again:

• This assignment becomes relevant when the value of c is false

x = y + 1; ← is this statement still dead?
y = 2 * z;
if (c) { x = y + z; }
z = 1; ← what about that one?
z = x;

x = y + 1; ← x is reused in a loop here
y = 2 * z;
if (c) { x = y + z; }
z = 1; ← This still makes no difference
z = x;

Compiler Construction 17: Optimizations in detail 7

Loops complicate even more…

• If we insert a loop…

• …neither statement can be omitted!

while (d) {
 x = y + 1; ← is this statement still dead?
 y = 2 * z;
 if (c) { x = y + z; }
 z = 1; ← is this statement still dead?
}
z = x;

while (d) {
 x = y + 1;
 y = 2 * z; ← assignment z=1 becomes relevant
 if (c) { x = y + z; } if there is an additional
 z = 1; iteration of the loop!
}
z = x;

Compiler Construction 17: Optimizations in detail 8

Low-level code makes it worse…

• Control flow is more obvious from source code syntax than from its
translation into jumps and labels:

L1:
 ifFalse (d) jump L2
 x = y + 1
 y = 2 * z
 ifFalse (c) jump L3
 x = y + z
L3:
 z = 1
 jump L1
L2:
 z = x

Data dependencies

Control flow

Compiler Construction 17: Optimizations in detail 9

What do we need?

• Methods to compute information that are
• implicit in the program
• static (so that it can be found at compile time)
• valid for every possible dynamic situation (at runtime)

• A data structure that can represent every possible control flow
• Different branches taken (conditionals)
• Branches taken different numbers of times (loops)

• Problem is similar to that of NFA:
“What are all the possible paths I can take from here?”

Compiler Construction 17: Optimizations in detail 10

Control Flow Graphs (CFGs)

• Program control flow can be captured in a directed graph, where
statements make nodes and their sequencing follows the arcs

• Movement of data can be inferred by traversing a structure like this
• By far the most common approach in present compilers

(It is also possible to graph data movement and infer control,
but let’s stick to the control flow view)

• Multiple paths emerge since nodes can have multiple incoming/
outgoing arcs

Compiler Construction 17: Optimizations in detail 11

Linear code sequences

• Rather simple…

• Therefore, we contract them to basic blocks
• but remember that there are separate

statements inside...

a = 1;

b = 2;

c = a + b;

a = 1

b = 2

a = 1
b = 2
c = a + b

c = a + b

Compiler Construction 17: Optimizations in detail 12

Branches end basic blocks

• This code needs multiple basic blocks:

x = z - 2;

y = 2 * z;

if (c) {

 x = x + 1;

 y = y + 1;

} else {

 x = x - 1;

 y = y - 1;

}

z = x + y;

x = z - 2
y = 2 * z
if (c) {

z = x + y

x = x + 1
y = y + 1

x = x - 1
y = y - 1

T F

Compiler Construction 17: Optimizations in detail 13

Multiple paths

• Every possible execution is
encoded in the CFG

• Each path corresponds
to a run of the program

x = z - 2
y = 2 * z
if (c) {

z = x + y

x = x + 1
y = y + 1

x = x - 1
y = y - 1

T F

B1

B2 B3

B4

Compiler Construction 17: Optimizations in detail 14

Choose your path…

When c is true:

x = z - 2
y = 2 * z
if (c) {

z = x + y

x = x - 1
y = y - 1

B1

B3

B4

When c is false:

x = z - 2
y = 2 * z
if (c) {

z = x + y

x = x + 1
y = y + 1

B1

B2

B4

Compiler Construction 17: Optimizations in detail 15

Infeasible executions

Some paths may not correspond to any possible run:

…code…
if (c) {

…code…
if (c) {

"then" code "else" code

T F

…code…

"then" code "else" code

T F

Here, we assume
that neither the
"then" nor the

"else" path change
the value of c

Compiler Construction 17: Optimizations in detail 16

Infeasible executions

⇒ This path is infeasible, even though it is part of the CFG!

…code…
if (c) {

…code…
if (c) {

"then" code

T

…code…

"else" code

F

Here, we assume
that neither the
"then" nor the

"else" path change
the value of c

Compiler Construction 17: Optimizations in detail 17

Interpretation of arcs

• Without pruning infeasible paths (which may require
run-time information), the analysis will remain conservative/safe as
long as every actual path is also represented

• Outgoing arcs mean that their destination
may be a successor to a basic block

• Incoming arcs mean that any of the source
blocks may be a predecessor to a basic block

…code…
if (c) {

"then" code

"else" code

Compiler Construction 17: Optimizations in detail 18

Recursive CFG construction

• At high level, CFGs can be built by a syntax directed scheme
• Similar to our translation to TAC

S3

Sn

:
:

S1

S2

CFG(S1; S2; … ; Sn) = CFG(if (E) S1 else S2) =

if (E)

S1 S2

(empty)

Compiler Construction 17: Optimizations in detail 19

Recursive CFG construction: if/while

CFG(if (E) S) =

if (E)

S

(empty)

CFG(while (E) S) =

S

(empty)

if (E)

Compiler Construction 17: Optimizations in detail 20

Recursive application

(S1; S2)
S2

S1

while (c) {

 x = y +1;

 y = 2 * z;

 if (d) x = y + z;

 z = 1;

}

z = x;

• We are analyzing statements recursively to refine our CFG:

Compiler Construction 17: Optimizations in detail 21

Recursive application

(while)

S2

if (c)while (c) {

 x = y +1;

 y = 2 * z;

 if (d) x = y + z;

 z = 1;

}

z = x;

body

• We are analyzing statements recursively to refine our CFG:

Compiler Construction 17: Optimizations in detail 22

Recursive application

(S1; S2; S3; S4)

while (c) {

 x = y +1;

 y = 2 * z;

 if (d) x = y + z;

 z = 1;

}

z = x;

• We are analyzing statements recursively to refine our CFG:

S2

if (c)

S3

S1

S2

S4

Compiler Construction 17: Optimizations in detail 23

Recursive application

while (c) {

 x = y +1;

 y = 2 * z;

 if (d) x = y + z;

 z = 1;

}

z = x;

• We are analyzing statements recursively to refine our CFG:

(S1; S2; S3; S4)

S2

if (c)

S3

x=y+1

y=2*z

z=1

if (d)

x=y+z

Compiler Construction 17: Optimizations in detail 24

Efficiency

x = x + 1
y = 2 * z
if (d)

if (c)

• Empty blocks and sequences can be pruned after or during
construction of the CFG

z = 1

z = x

x = x + z

Compiler Construction 17: Optimizations in detail 25

Efficiency

• These graphs grow large
• It’s good to have as few basic blocks as possible
• They should be as large as possible

• Merge linear subgraphs if
• B2 is a successor of B1
• B1 has one outgoing edge
• B2 has one incoming edge
• B1→B2 should be a block

• Remove empty blocks

Compiler Construction 17: Optimizations in detail 26

At low-level IR

• Split the operation sequence at labels and jumps
• Labels can have incoming control flow
• Jumps have outgoing control flow

L1:
 ifFalse (c) jump L2
 x = y + 1
 y = 2 * z
 ifFalse (d) jump L3
 x = y + z
L3:
 z = 1
 jump L1
L2:
 z = x

L1:
 ifFalse (c) jump L2

 x = y + z

 x = y + 1
 y = 2 * z
 ifFalse (d) jump L3

L3:
 z = 1
 jump L1

L2:
 z = x

Compiler Construction 17: Optimizations in detail 27

At low-level IR

L1:
 ifFalse (c) jump L2
 x = y + 1
 y = 2 * z
 ifFalse (d) jump L3
 x = y + z
L3:
 z = 1
 jump L1
L2:
 z = x

L1:
 ifFalse (c) jump L2

 x = y + z

 x = y + 1
 y = 2 * z
 ifFalse (d) jump L3

L3:
 z = 1
 jump L1

L2:
 z = x

• Conditional jump = 2 successors
• Unconditional jump = 1 successor

Compiler Construction 17: Optimizations in detail 28

The outcome is the same

• Both procedures give us the equivalent program logic:

L1:
 ifFalse (c) jump L2

 x = y + z

 x = y + 1
 y = 2 * z
 ifFalse (d) jump L3

L3:
 z = 1
 jump L1

L2:
 z = x

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

Compiler Construction 17: Optimizations in detail 29

Live variables and the CFG

• The purpose of using the CFG is to statically extract
information about the program at compile time

• Reasoning about the run-time values of variables and
expressions in every possible execution enables optimizations

• We can illustrate this by finding live variables

Compiler Construction 17: Optimizations in detail 30

Liveness

• A live variable is one which holds a value that may still
be used at a later point

• Conversely, a dead variable is guaranteed to see no further
use (until its next assignment)

• This means we’re searching for ranges of instructions in the
program where variables hold values that matter to the
execution

• In order to find ranges of instructions, we need to define
program points the ranges can span across

Compiler Construction 17: Optimizations in detail 31

Program points

• As we want to capture how state is changed through an
instruction, we need to talk about the state before and the state
after, and describe the difference

• Hence, there is one program point before and one after each
instruction

• For basic blocks, these are the points
• after the predecessor(s)
• before the successor(s)

a = b + 1

Point before

Point after

Compiler Construction 17: Optimizations in detail 32

Program points in our previous ex.

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

These are all the
program points!

• We mark the before and after points with dashed lines here:

Compiler Construction 17: Optimizations in detail 33

Two things to consider

• How does an instruction affect the state at the points
immediately before and after it?

• In other words, what is the effect of an instruction?

• How does state propagate between program points?
• In other words, what is the effect of control flow?

• If we can tell which variables are life at one point, we can
compute which ones are live by its neighbors

Compiler Construction 17: Optimizations in detail 34

Which instructions affect liveness?

• If a variable is used in an expression, it must be kept at the
preceding program point:

• If a variable is defined in an expression, it was dead at the
preceding program point:

a = b + 1

b must be live here, we need it
in the following statement

a = b + 1

a will not be used again here, it is
overwritten in the following statement

Compiler Construction 17: Optimizations in detail 35

Doing it systematically

• For an instruction I, define two sets of variables
• in[I] = set of live variables at point before I
• out[I] = set of live variables at point after I

• This extends naturally to basic blocks
• in[B] = set of live variables at point before B
• out[B] = set of live variables at point after B

• ...so if I1 and I2 are the first and last instructions in B,
• in[B] = in[I1]
• out[B] = out[I2]

Compiler Construction 17: Optimizations in detail 36

Before & after vs. instructions

• All variables used by an instruction must be live before it can
use them

• Variables defined by an instruction are not live at the last point
before the instruction

• So,
live before = live after – defined vars + used vars

or
in[I] = out[I] – def(I) + use(I)

Compiler Construction 17: Optimizations in detail 37

Before & after vs. control flow

• All variables used along the path of any successor must be live
after the predecessor

• You never know which path will be taken, one of them
might need it

• Where control flows split,
live after = live before successor #1 + live before successor #2 + …

or
out[I] = in[I1] + in[I2]
where I1, I2 are successors of I

Compiler Construction 17: Optimizations in detail 38

Liveness flows backwards

• We define the in-sets in terms of the out-sets

• This means we need out-sets to start our analysis

• In the name of safety, assume that every variable is live until it
has been determined otherwise

• This results in a final out-state to start working from, so that we
can examine the CFG in reverse

Compiler Construction 17: Optimizations in detail 39

Start at the end…

• Conservative assumption: everything is live at the end

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

{c,d,x,y,z}

Compiler Construction 17: Optimizations in detail 40

Iteration 1

• The last statement defines z

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

{c,d,x,y,z}

{c,d,x,y}

Compiler Construction 17: Optimizations in detail 41

Iteration 1

• Its predecessor doesn’t define anything

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

{c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

Compiler Construction 17: Optimizations in detail 42

Iteration 1

• Predecessor defines z, but it wasn’t live anyway

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

{c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

Compiler Construction 17: Optimizations in detail 43

Iteration 1

• Predecessor uses z, it is live again

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

{c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y}
{c,d,y,z}

Compiler Construction 17: Optimizations in detail 44

Iteration 1

• Predecessor of two successors (control flow):
must assume union of the live variables of each successor

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

{c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y}
{c,d,y,z}
{c,d,x,y,z}

Compiler Construction 17: Optimizations in detail 45

Iteration 1

• Definition of y

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

{c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y}
{c,d,y,z}
{c,d,x,y,z}
{c,d,x,y,z}
{c,d,x,z}

Compiler Construction 17: Optimizations in detail 46

Iteration 1

• Use of y, definition of z

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

{c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y}
{c,d,y,z}
{c,d,x,y,z}
{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

Compiler Construction 17: Optimizations in detail 47

End of iteration 1

• We’ve covered all points, but something changed
• Repeat from the start...

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

{c,d,x,y,z}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y}
{c,d,y,z}
{c,d,x,y,z}
{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

Compiler Construction 17: Optimizations in detail 48

Iteration 2

• The union of the two successors here is different

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

{c,d,x,y,z}

{c,d,x,y}

{c,d,x,y,z}
{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y}
{c,d,y,z}
{c,d,x,y,z}
{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

Compiler Construction 17: Optimizations in detail 49

Iteration 2

• Propagate it to the predecessor

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

{c,d,x,y,z}

{c,d,x,y}

{c,d,x,y,z}
{c,d,x,y,z}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y}
{c,d,y,z}
{c,d,x,y,z}
{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

49

Compiler Construction 17: Optimizations in detail 50

Iteration 2

• ...and again, until we’ve been through all nodes...
(then repeat, because something changed)

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

{c,d,x,y,z}

{c,d,x,y}

{c,d,x,y,z}
{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,y}

{c,d,x,y}
{c,d,y,z}
{c,d,x,y,z}
{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

5050

Compiler Construction 17: Optimizations in detail 51

Iteration 3

• Nothing changes, we have reached a fixed point

if (c)

z=x

z=1

x=y+z

x=y+1
y=2*z
if (d)

{c,d,x,y,z}

{c,d,x,y}

{c,d,x,y,z}
{c,d,x,y,z}

{c,d,x,y,z}
{c,d,x,y}

{c,d,x,y}
{c,d,y,z}
{c,d,x,y,z}
{c,d,x,y,z}
{c,d,x,z}
{c,d,y,z}

515151

Compiler Construction 17: Optimizations in detail 52

Between the lines

• Every instruction implies a constraint equation
• Live before = live after – what it defines + what it uses

• Everywhere control flows join, there is another constraint equation
• Live after = sum of what’s live at all successors

• The framework for data flow analysis simply uses different instances of
this pattern

• Different constraint equations capture different information
• Different split/join behavior follows from the type of information
• May work forward or backward (liveness propagates backwards)

• We’ll look at a handful of instances next week

Compiler Construction 17: Optimizations in detail 53

What’s next?

• Optimizations in detail: data-flow analyses

References
[1] Frances E. Allen. 1970.
 Control flow analysis. SIGPLAN Not. 5, 7 (July 1970), 1–19.
 DOI:https://doi.org/10.1145/390013.808479

