B NTNU | sioncindrecnoivay

Compiler Construction
Lecture 17: Optimizations in detail

Michael Engel

Overview

« Optimizations
« Control-flow graphs
* Liveness of variables

@ NTNU | S oy Compiler Construction 17: Optimizations in detail

Optimization

« WWe wish to apply various program transformations to improve its
non-functional properties without changing its meaning

» Transformations can apply either at IR or lower levels

» Optimizations have to be safe

* the optimized program must give the same results as the
un-optimized program for every possible execution

* We need some structured approaches to ensure this...

@ NTNU | S oy Compiler Construction 17: Optimizations in detail

The meaning of programs

* Information required for performing optimizations often is not
explicitly contained in the source code

« SO0 we have to extract information

 Consider the following code:

X =y + 1;
y = 2% z;
X =y + Z;
z = 1;
zZ = X;

* Are all these statements necessary?

@ NTNU | S oy Compiler Construction 17: Optimizations in detail

Program meaning is implicit

« Some of the statements are dead code

x =y + 1; & This assignment of x

y =2 * z; + .is not used in any intermediate statement..
X =y + z; < .until x is assigned again here

z = 1; < This assignment of z..

Z = X; + .1is immediately overwritten

» Knowing this, we can construct a shorter identical program

y =2 * z;
X =y + z;
Z = X;

e Control flow is linear here, so the dead state is obvious
* [t becomes harder to tell when control flow is involved

@ NTNU | S oy Compiler Construction 17: Optimizations in detail

Conditions complicate everything

 |f we add some control flow...

1; +— 1is this statement still dead?
Z

X =Y

y 2 1

if (¢) { x =y +z; }

z = 1; + what about that one?
Z = X

* ...the first assignment to x may or may not be used again:

x =y +1; & x is reused in a loop here

y =2 * z;

if (c) { x =y + z; }

z = 1; + This still makes no difference
Z = X;

* This assignment becomes relevant when the value of c is false

@ NTNU | S oy Compiler Construction 17; Optimizations in detail

Loops complicate even more...

* If we insert a loop...

while (d) {
x =y + 1; <+« is this statement still dead?
y =2%z;
if (¢) { x =y +z;}
z = 1; + 1is this statement still dead?

}

Z = X;

» ...neither statement can be omitted!

while (d) {
X =y + 1;
y =2 * z; < assignment z=1 becomes relevant
if (c) D if there is an additional
z = 1; iteration of the loop!

}

Z = X;

@ NTNU | S oy Compiler Construction 17: Optimizations in detail

Low-level code makes it worse...

 Control flow is more obvious from source code syntax than from its
translation into jumps and labels:

- ifFalse ’ antrol flow
Data dependencies x=y+1 s
X y=2%z x
..o.’ ifFalse (c) jump L3
“ X=Yy + z

z =1
jump L1

L2:
Z = X

@ NTNU | S oy Compiler Construction 17: Optimizations in detail 8

What do we need?

« Methods to compute information that are
 implicit in the program
« static (so that it can be found at compile time)
« valid for every possible dynamic situation (at runtime)

A data structure that can represent every possible control flow
* Different branches taken (conditionals)
« Branches taken different numbers of times (loops)

* Problem is similar to that of NFA:
“What are all the possible paths | can take from here?”

@ NTNU | S oy Compiler Construction 17: Optimizations in detail

Control Flow Graphs (CFGs)

* Program control flow can be captured in a directed graph, where
statements make nodes and their sequencing follows the arcs

* Movement of data can be inferred by traversing a structure like this

By far the most common approach in present compilers
(It is also possible to graph data movement and infer control,
but let’s stick to the control flow view)

» Multiple paths emerge since nodes can have multiple incoming/
outgoing arcs

@ NTNU | S oy Compiler Construction 17: Optimizations in detail 10

Linear code sequences

- Rather simple... L 3;1
a=1; ﬂ | b =2
c=a+hb gc =a+b

» Therefore, we contract them to basic blocks (0-1

* but remember that there are separate : j 2 b

statements inside...

@ NTNU | S oy Compiler Construction 17: Optimizations in detail

1

Branches end basic blocks

 This code needs multiple basic blocks:

X =2z - 2; X =
=2 * 7 y=2%z
it () ﬁ =l
if (c
y=y+1! lX=x 1 | =
} else { vyt :

@ NTNU | S oy Compiler Construction 17: Optimizations in detail

12

Multiple paths

* Every possible execution is

encoded in the CFG B1
u X =2z -2
« Each path corresponds yif= (Zc)* {z

to a run of the program ‘
B2 _ K/T N B3

< X
1] 1
< X
(IR
1 1]
< X
1 1
R R

@ NTNU | S oy Compiler Construction 17: Optimizations in detail 13

Choose your path...

When c Is true: When c is false:
B1 B1
| X =2z - 2 | X =2z -2
y=2%z y=2%z
if (c) { - if () {

r.msa..‘
< X
n nu
< X
+ +
Y
—_—
< X
n nu
< X
| I |
[

o o a”

ﬁ‘z=x+y ﬂ Z=XxX+Yy

@ NTNU | S oy Compiler Construction 17: Optimizations in detail

Infeasible executions

Some paths may not correspond to any possible run:

| ~code.. | Here, we assume
H f (C) { that neither the
‘ "then" nor the

Ak,fqr "else" path change
/ the value of c

Y"then" code else code -
g code
}"then" code else code
code

@ NTNU | S oy Compiler Construction 17: Optimizations in detail

15

Infeasible executions

= This path is infeasible, even though it is part of the CFG!

Here, we assume H - if (c) {

that neither the .
"then" nor the ﬁ
"else" path change - , :
N ﬂ "then" code

the value of c l

H"else“ code

x

ﬂ ~code..

@ NTNU | ’S\lc?g\ggégfr?dUTne:\c/ﬁ;%%gO; Compiler Construction 17: Optimizations in detail

16

Interpretation of arcs

 Without pruning infeasible paths (which may require
run-time information), the analysis will remain conservative/safe as
long as every actual path is also represented

S
if (c
« Qutgoing arcs mean that their destination k/
may be a successor to a basic block |
ﬁ"then" code
* Incoming arcs mean that any of the source
blocks may be a predecessor to a basic block \A

{
|

H"glse" code

@ NTNU | S oy Compiler Construction 17; Optimizations in detail 17

Recursive CFG construction

* At high level, CFGs can be built by a syntax directed scheme
 Similar to our translation to TAC

CFG(S1; S2; .. ; Sn) = CFG(if (E) S1 else S2) =
o1 _
* | if, (E) |
S2 | &' o | ‘ﬁ
e 9 - s1 L S2

s | \;_;Aj/-
& | (empty)

v

ﬁ{ Sn

@ NTNU | S oy Compiler Construction 17: Optimizations in detail

Recursive CFG construction: if/while

CFG(if (E) S) = CFG(while (E) S) =

@ NTNU | S oy Compiler Construction 17: Optimizations in detail

19

Recursive application

* We are analyzing statements recursively to refine our CFG:

(while (c) h
X =y +1; ﬁ S1
y = 2% z; (S1; S2) | %
if (d) x = y + z; “ S2
z = 1;

U D

ax >

@ NTNU | S oy Compiler Construction 17: Optimizations in detail 20

Recursive application

* We are analyzing statements recursively to refine our CFG:

ghile (c) { 2 ¥ if (o)
X =y +1; %

y=2*z; (while) | body
if (d) x = y + z; : '

: .

Z =

e
&

@ NTNU | S oy Compiler Construction 17: Optimizations in detail 21

Recursive application

* We are analyzing statements recursively to refine our CFG:

while (c) { !
[x = y +1;) | S1
y =2*z; (S1; S2; S3; Su) Si ,

2

1f (d) X = y + Z; ;

- S3

L z = 1; » ,
} ;
S4

Z = X; :

!

@ NTNU | S oy Compiler Construction 17: Optimizations in detail 22

Recursive application

* We are analyzing statements recursively to refine our CFG:

while (c) { | !
(x-y D Xyt | if (d)
(y=2"*z;)(Sl; S2; S3; S4) _;, ‘
(if (d) x =y + z;) my-iz i K
C z = 1;) S3 - X=y+z ¢
1 |
} — r\il;__xz'_1
Z = X; : |

@ NTNU | S oy Compiler Construction 17: Optimizations in detail 23

Efficiency

« Empty blocks and sequences can be pruned after or during
construction of the CFG

& if (c

RS

if (d)

'ﬁx=x+z l
!' z =1
— 1

+ 1
* z

y

@ NTNU | S oy Compiler Construction 17: Optimizations in detail 24

Efficiency

* These graphs grow large
* It's good to have as few basic blocks as possible
* They should be as large as possible

* Merge linear subgraphs if
* B2 is a successor of B1
* B1 has one outgoing edge
* B2 has one incoming edge
* B1—B2 should be a block

* Remove empty blocks

@ NTNU | S oy Compiler Construction 17: Optimizations in detail 25

At low-level IR

 Split the operation sequence at labels and jumps
 Labels can have incoming control flow
« Jumps have outgoing control flow

L1:
ifFalse (c¢) jump L2
L1:
ifFalse (c) jump L2 x=y+1
x=y+1 y=2%z
y=2*z ifFalse (d) jump L3
ifFalse (d) jump L3
X =y + 2 X =Yy +1Z
L3:
z =1 L3:
jump L1 z =1
L2: jump L1
z = X
L2:
z = X

@ NTNU | S oy Compiler Construction 7 Optimizations in aetail

At low-level IR

« Conditional jump = 2 successors
» Unconditional jump = 1 successor

-}Ll:
ifFalse (c¢) jump L2
L1: *
ifFalse (c) jump L2 =y +1
x=y+1 y=2%z
y=2*z | ifFalse g) jump L3
ifFalse (d) jump L3 -4
X =y + 2 X=y+*1z
L3: ¥
z =1
jump L1 z =1
L2: S — 1o I B
z =X
L2 e
z = X |

@ NTNU | S oy Compiler Construction 7 Optimizations in aetail

The outcome is the same

» Both procedures give us the equivalent program logic:

@ NTNU

Norwegian University of
Science and Technology

*Ll:
ifFalse
X=y+
y=2*

pe jfFalse

X=y+

s ST
z =1
fouminwane jUmMp L1

$) jump L3

z

¥

S —

Compiler Construction 17: Optimizations in detail

28

Live variables and the CFG

* The purpose of using the CFG is to statically extract
information about the program at compile time

« Reasoning about the run-time values of variables and
expressions in every possible execution enables optimizations

« We can illustrate this by finding live variables

@ NTNU | S oy Compiler Construction 17; Optimizations in detail

29

Liveness

* Alive variable is one which holds a value that may still
be used at a later point

» Conversely, a dead variable is guaranteed to see no further
use (until its next assignment)

* This means we’re searching for ranges of instructions in the
program where variables hold values that matter to the
execution

* In order to find ranges of instructions, we need to define
program points the ranges can span across

@ NTNU | S oy Compiler Construction 17: Optimizations in detail 30

Program points

* As we want to capture how state is changed through an
instruction, we need to talk about the state before and the state
after, and describe the difference

* Hence, there is one program point before and one after each
instruction

i Point before

O < IIIIIIIIIIIII Point after

 For basic blocks, these are the points
« after the predecessor(s)
* before the successor(s)

@ NTNU | S oy Compiler Construction 17: Optimizations in detail 31

Program points in our previous ex.

* We mark the before and after points with dashed lines here:

tf These are all the
program points!

@ NTNU | S oy Compiler Construction 17; Optimizations in detail 32

Two things to consider

* How does an instruction affect the state at the points
immediately before and after it?

* In other words, what is the effect of an instruction?

« How does state propagate between program points?
* In other words, what is the effect of control flow?

* If we can tell which variables are life at one point, we can
compute which ones are live by its neighbors

@ NTNU | S oy Compiler Construction 17: Optimizations in detail 33

Which instructions affect liveness?

« If a variable is used in an expression, it must be kept at the
preceding program point:

b must be live here, we need it
in the following statement

|2a=b=+1

O

* If a variable is defined in an expression, it was dead at the
preceding program point:

a will not be used again here, it is
overwritten in the following statement

§a=b+1

O

@ NTNU | S oy Compiler Construction 17; Optimizations in detail 34

Doing it systematically

* For an instruction I, define two sets of variables
*in[I] = set of live variables at point before I
* out[I] = set of live variables at point after I

 This extends naturally to basic blocks
* in[B] = set of live variables at point before B
 out[B] = set of live variables at point after B

e ..soif I1 and I2 are the first and last instructions in B,
*in[B] = in[I1]
e out[B] = out[I2]

@ NTNU | S oy Compiler Construction 17: Optimizations in detail 35

Before & after vs. instructions

« All variables used by an instruction must be live before it can
use them

« Variables defined by an instruction are not live at the last point
before the instruction

* So,
live before = live after — defined vars + used vars
or

in[I] = out[I] - def(I) + use(I)

@ NTNU | S oy Compiler Construction 17; Optimizations in detail 36

Before & after vs. control flow

« All variables used along the path of any successor must be live
after the predecessor

* You never know which path will be taken, one of them
might need it

* Where control flows spilit,
live after = live before successor #1 + live before successor #2 + ...

or
out[I] = in[I1] + in[I2]
where I1, I2 are successors of I

@ NTNU | S oy Compiler Construction 17: Optimizations in detail 37

Liveness flows backwards

* WWe define the in-sets in terms of the out-sets
» This means we need out-sets to start our analysis

* In the name of safety, assume that every variable is live until it
has been determined otherwise

 This results in a final out-state to start working from, so that we
can examine the CFG in reverse

@ NTNU | S oy Compiler Construction 17; Optimizations in detail

38

Start at the end...

« Conservative assumption: everything is live at the end

@ NTNU | S oy Compiler Construction 17: Optimizations in detail 39

lteration 1

* The last statement defines z

{c,d,x,y}
{c,d,x,y,z}

@ NTNU | S oy Compiler Construction 17: Optimizations in detail 40

lteration 1

* Its predecessor doesn’t define anything

{c,d,x,y}
{c,d,x,y}

{c,d,x,y}
{c,d,x,y,z}

N ian University of
@ NTINU | S Tecimoioss Compiler Construction 17: Optimizations in detail

41

lteration 1

* Predecessor defines z, but it wasn’t live anyway

{c,d,x,y}
{c,d,x,y}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y,z}

@ NTINU | Sowegian riversiy of Compiler Construction 17: Optimizations in detail 42

Science and Technology

lteration 1

* Predecessor uses z, it is live again

{c,d,x,y}
{c,d,x,y}

{C!d!ylz}
{c,d,x,y}
{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y,z}

N ian University of
@ NTINU | S Tecimoioss Compiler Construction 17: Optimizations in detail 43

lteration 1

* Predecessor of two successors (control flow):
must assume union of the live variables of each successor

{c,d,x,y}
{c,d,x,y}

{c,d,x,y,z}
{c,d,y,z}
{c,d,x,y}
{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y,z}

@ NTNU | S oy Compiler Construction 17: Optimizations in detail

44

lteration 1

* Definition of y

@ NTNU | sanetandrecnoiogy

{c,d,x,y}
{c,d,x,y}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y,z}

Compiler Construction 17: Optimizations in detail

45

lteration 1

» Use of y, definition of z

@ NTNU | sanetandrecnoiogy

{c,d,x,y}

{e,d,x,y}
{c,d,y,z}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y,z}

Compiler Construction 17: Optimizations in detail

46

End of iteration 1

« We've covered all points, but something changed

* Repeat from the start...

@ NTNU | sanetandrecnoiogy

{c,d,x,y}

{e,d,x,y}
{c,d,y,z}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y,z}

Compiler Construction 17: Optimizations in detail

47

lteration 2

 The union of the two successors here is different

{c,d,x,y}
{e,d,x,y,z}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y,z}

@ NTNU | S oy Compiler Construction 17; Optimizations in detail

lteration 2

* Propagate it to the predecessor

@ NTNU | sanetandrecnoiogy

{e,d,x,y,z}

{c,d,x,y}

{c,d,x,y}
{c,d,x,y}

{c,d,x,y,z}

Compiler Construction 17: Optimizations in detail

49

lteration 2

» ...and again, until we've been through all nodes...

(then repeat, because something changed)

@ NTNU | sanetandrecnoiogy

{c,d,x,y,z}
{e,d,x,y,z}

{c,d,x,y}

{c,d,x,y,z}
{c,d,x,y}

{c,d,x,y,z}

Compiler Construction 17: Optimizations in detail

50

lteration 3

* Nothing changes, we have reached a fixed point

{e,d,x,y,z}

{c,d,x,y}

{c,d,x,y,z}
{c,d,x,y}

{c,d,x,y,z}

@ NTINU | Sowegian riversiy of Compiler Construction 17: Optimizations in detail

Science and Technology

Between the lines

 Every instruction implies a constraint equation
* Live before = live after — what it defines + what it uses

« Everywhere control flows join, there is another constraint equation
* Live after = sum of what’s live at all successors

* The framework for data flow analysis simply uses different instances of
this pattern

* Different constraint equations capture different information
* Different split/join behavior follows from the type of information
« May work forward or backward (liveness propagates backwards)

« We'll look at a handful of instances next week

@ NTNU | S oy Compiler Construction 17; Optimizations in detail 52

What’s next?

» Optimizations in detail: data-flow analyses

References

[1] Frances E. Allen. 1970.
Control flow analysis. SIGPLAN Not. 5, 7 (July 1970), 1-19.
DOIl:https://doi.org/10.1145/390013.808479

@ NTNU | S oy Compiler Construction 17: Optimizations in detail 53

