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Overview
• Optimizations 

• Control-flow graphs 
• Liveness of variables
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Optimization

• We wish to apply various program transformations to improve its 
non-functional properties without changing its meaning 

• Transformations can apply either at IR or lower levels 

• Optimizations have to be safe 
• the optimized program must give the same results as the 

un-optimized program for every possible execution  

• We need some structured approaches to ensure this…
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The meaning of programs

• Information required for performing optimizations often is not 
explicitly contained in the source code 

• So we have to extract information 

• Consider the following code: 

• Are all these statements necessary?

x = y + 1; 

y = 2 * z; 

x = y + z; 

z = 1; 

z = x;
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Program meaning is implicit

• Some of the statements are dead code 

• Knowing this, we can construct a shorter identical program 

• Control flow is linear here, so the dead state is obvious 
• It becomes harder to tell when control flow is involved

x = y + 1;   ← This assignment of x 
y = 2 * z;   ← …is not used in any intermediate statement… 
x = y + z;   ← …until x is assigned again here 
z = 1;       ← This assignment of z… 
z = x;       ← …is immediately overwritten

y = 2 * z; 

x = y + z; 

z = x;
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Conditions complicate everything

• If we add some control flow… 

• …the first assignment to x may or may not be used again: 

• This assignment becomes relevant when the value of c is false

x = y + 1;   ← is this statement still dead? 
y = 2 * z;    
if (c) { x = y + z; }   
z = 1;       ← what about that one? 
z = x;      

x = y + 1;   ← x is reused in a loop here 
y = 2 * z;    
if (c) { x = y + z; } 
z = 1;       ← This still makes no difference 
z = x;      
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Loops complicate even more…

• If we insert a loop… 

• …neither statement can be omitted!

while (d) { 
   x = y + 1;   ← is this statement still dead? 
   y = 2 * z;    
   if (c) { x = y + z; } 
   z = 1;       ← is this statement still dead? 
} 
z = x;      

while (d) { 
   x = y + 1;   
   y = 2 * z;               ← assignment z=1 becomes relevant    
   if (c) { x = y + z; }       if there is an additional  
   z = 1;                      iteration of the loop! 
} 
z = x;      
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Low-level code makes it worse…

• Control flow is more obvious from source code syntax than from its 
translation into jumps and labels: 

L1: 
   ifFalse (d) jump L2 
   x = y + 1 
   y = 2 * z 
   ifFalse (c) jump L3 
   x = y + z 
L3: 
   z = 1 
   jump L1 
L2: 
   z = x

Data dependencies

Control flow
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What do we need?

• Methods to compute information that are 
• implicit in the program  
• static (so that it can be found at compile time) 
• valid for every possible dynamic situation (at runtime)  

• A data structure that can represent every possible control flow  
• Different branches taken (conditionals) 
• Branches taken different numbers of times (loops)  

• Problem is similar to that of NFA:  
“What are all the possible paths I can take from here?”  
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Control Flow Graphs (CFGs)

• Program control flow can be captured in a directed graph, where 
statements make nodes and their sequencing follows the arcs  

• Movement of data can be inferred by traversing a structure like this  
• By far the most common approach in present compilers  

(It is also possible to graph data movement and infer control, 
but let’s stick to the control flow view)  

• Multiple paths emerge since nodes can have multiple incoming/
outgoing arcs  
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Linear code sequences

• Rather simple… 

• Therefore, we contract them to basic blocks  
• but remember that there are separate  

statements inside...

a = 1; 

b = 2; 

c = a + b;

a = 1

b = 2

a = 1 
b = 2 
c = a + b

c = a + b
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Branches end basic blocks

• This code needs multiple basic blocks:

x = z - 2; 

y = 2 * z; 

if (c) { 

   x = x + 1; 

   y = y + 1; 

} else { 

   x = x - 1; 

   y = y - 1; 

}  

z = x + y;

x = z - 2 
y = 2 * z 
if (c) {

z = x + y

x = x + 1 
y = y + 1

x = x - 1 
y = y - 1

T F
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Multiple paths

• Every possible execution is  
encoded in the CFG 

• Each path corresponds 
to a run of the program

x = z - 2 
y = 2 * z 
if (c) {

z = x + y

x = x + 1 
y = y + 1

x = x - 1 
y = y - 1

T F

B1

B2 B3

B4
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Choose your path…

When c is true:

x = z - 2 
y = 2 * z 
if (c) {

z = x + y

x = x - 1 
y = y - 1

B1

B3

B4

When c is false:

x = z - 2 
y = 2 * z 
if (c) {

z = x + y

x = x + 1 
y = y + 1

B1

B2

B4
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Infeasible executions

Some paths may not correspond to any possible run:

…code… 
if (c) {

…code… 
if (c) {

"then" code "else" code

T F

…code…

"then" code "else" code

T F

Here, we assume 
that neither the 
"then" nor the 

"else" path change 
the value of c
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Infeasible executions

⇒ This path is infeasible, even though it is part of the CFG!

…code… 
if (c) {

…code… 
if (c) {

"then" code

T

…code…

"else" code

F

Here, we assume 
that neither the 
"then" nor the 

"else" path change 
the value of c
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Interpretation of arcs

• Without pruning infeasible paths (which may require  
run-time information), the analysis will remain conservative/safe as 
long as every actual path is also represented  

• Outgoing arcs mean that their destination  
may be a successor to a basic block 

• Incoming arcs mean that any of the source  
blocks may be a predecessor to a basic block 

…code… 
if (c) {

"then" code

"else" code
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Recursive CFG construction

• At high level, CFGs can be built by a syntax directed scheme 
• Similar to our translation to TAC

S3      

Sn      

: 
:

S1

S2

CFG(S1; S2; … ; Sn) = CFG(if (E) S1 else S2) = 

if (E)

S1 S2      

(empty)  
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Recursive CFG construction: if/while

CFG(if (E) S) = 

if (E)

S

(empty)  

CFG(while (E) S) = 

S

(empty)  

if (E)
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Recursive application

(S1; S2)
S2

S1

while (c) { 

  x = y +1; 

  y = 2 * z; 

  if (d) x = y + z; 

  z = 1; 

}  

z = x;

• We are analyzing statements recursively to refine our CFG:
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Recursive application

(while)

S2

if (c)while (c) { 

  x = y +1; 

  y = 2 * z; 

  if (d) x = y + z; 

  z = 1; 

}  

z = x;

body

• We are analyzing statements recursively to refine our CFG:
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Recursive application

(S1; S2; S3; S4)

while (c) { 

  x = y +1; 

  y = 2 * z; 

  if (d) x = y + z; 

  z = 1; 

}  

z = x;

• We are analyzing statements recursively to refine our CFG:

S2

if (c)

S3

S1

S2

S4
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Recursive application

while (c) { 

  x = y +1; 

  y = 2 * z; 

  if (d) x = y + z; 

  z = 1; 

}  

z = x;

• We are analyzing statements recursively to refine our CFG:

(S1; S2; S3; S4)

S2

if (c)

S3

x=y+1

y=2*z

z=1

if (d)

x=y+z
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Efficiency

x = x + 1 
y = 2 * z 
if (d)

if (c)

• Empty blocks and sequences can be pruned after or during 
construction of the CFG

z = 1

z = x

x = x + z
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Efficiency

• These graphs grow large  
• It’s good to have as few basic blocks as possible  
• They should be as large as possible  

• Merge linear subgraphs if 
• B2 is a successor of B1 
• B1 has one outgoing edge 
• B2 has one incoming edge 
• B1→B2 should be a block  

• Remove empty blocks
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At low-level IR

• Split the operation sequence at labels and jumps  
• Labels can have incoming control flow  
• Jumps have outgoing control flow 

L1: 
   ifFalse (c) jump L2 
   x = y + 1 
   y = 2 * z 
   ifFalse (d) jump L3 
   x = y + z 
L3: 
   z = 1 
   jump L1 
L2: 
   z = x

L1: 
   ifFalse (c) jump L2

   x = y + z

   x = y + 1 
   y = 2 * z 
   ifFalse (d) jump L3

L3: 
   z = 1 
   jump L1

L2: 
   z = x
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At low-level IR

L1: 
   ifFalse (c) jump L2 
   x = y + 1 
   y = 2 * z 
   ifFalse (d) jump L3 
   x = y + z 
L3: 
   z = 1 
   jump L1 
L2: 
   z = x

L1: 
   ifFalse (c) jump L2

   x = y + z

   x = y + 1 
   y = 2 * z 
   ifFalse (d) jump L3

L3: 
   z = 1 
   jump L1

L2: 
   z = x

• Conditional jump = 2 successors  
• Unconditional jump = 1 successor 
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The outcome is the same

• Both procedures give us the equivalent program logic: 

L1: 
   ifFalse (c) jump L2

   x = y + z

   x = y + 1 
   y = 2 * z 
   ifFalse (d) jump L3

L3: 
   z = 1 
   jump L1

L2: 
   z = x

if (c)

z=x

z=1

x=y+z

x=y+1 
y=2*z 
if (d)
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Live variables and the CFG

• The purpose of using the CFG is to statically extract 
information about the program at compile time  

• Reasoning about the run-time values of variables and 
expressions in every possible execution enables optimizations  

• We can illustrate this by finding live variables 
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Liveness

• A live variable is one which holds a value that may still  
be used at a later point  

• Conversely, a dead variable is guaranteed to see no further 
use (until its next assignment)  

• This means we’re searching for ranges of instructions in the 
program where variables hold values that matter to the 
execution  

• In order to find ranges of instructions, we need to define 
program points the ranges can span across 
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Program points

• As we want to capture how state is changed through an 
instruction, we need to talk about the state before and the state 
after, and describe the difference  

• Hence, there is one program point before and one after each 
instruction 

• For basic blocks, these are the points 
• after the predecessor(s) 
• before the successor(s)

a = b + 1

Point before

Point after
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Program points in our previous ex.

if (c)

z=x

z=1

x=y+z

x=y+1 
y=2*z 
if (d)

These are all the  
program points!

• We mark the before and after points with dashed lines here:



Compiler Construction 17: Optimizations in detail 33

Two things to consider

• How does an instruction affect the state at the points 
immediately before and after it?  

• In other words, what is the effect of an instruction?  

• How does state propagate between program points? 
• In other words, what is the effect of control flow?  

• If we can tell which variables are life at one point, we can 
compute which ones are live by its neighbors 
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Which instructions affect liveness?

• If a variable is used in an expression, it must be kept at the 
preceding program point:  

• If a variable is defined in an expression, it was dead at the  
preceding program point: 

a = b + 1

b must be live here, we need it 
in the following statement

a = b + 1

a will not be used again here, it is 
overwritten in the following statement



Compiler Construction 17: Optimizations in detail 35

Doing it systematically

• For an instruction I, define two sets of variables  
• in[I] = set of live variables at point before I 
• out[I] = set of live variables at point after I  

• This extends naturally to basic blocks  
• in[B] = set of live variables at point before B  
• out[B] = set of live variables at point after B  

• ...so if I1 and I2 are the first and last instructions in B,  
• in[B] = in[I1]  
• out[B] = out[I2] 
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Before & after vs. instructions

• All variables used by an instruction must be live before it can 
use them  

• Variables defined by an instruction are not live at the last point 
before the instruction  

• So, 
live before = live after – defined vars + used vars 

or 
in[I] = out[I] – def(I) + use(I)
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Before & after vs. control flow

• All variables used along the path of any successor must be live 
after the predecessor  

• You never know which path will be taken, one of them 
might need it  

• Where control flows split, 
live after = live before successor #1 + live before successor #2 + …  

or 
out[I] = in[I1] + in[I2] 
where I1, I2 are successors of I 
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Liveness flows backwards

• We define the in-sets in terms of the out-sets 

• This means we need out-sets to start our analysis 

• In the name of safety, assume that every variable is live until it 
has been determined otherwise 

• This results in a final out-state to start working from, so that we 
can examine the CFG in reverse 
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Start at the end…

• Conservative assumption: everything is live at the end 

if (c)

z=x

z=1

x=y+z

x=y+1 
y=2*z 
if (d)

{c,d,x,y,z} 
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Iteration 1

• The last statement defines z

if (c)

z=x

z=1

x=y+z

x=y+1 
y=2*z 
if (d)

{c,d,x,y,z} 

{c,d,x,y} 
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Iteration 1

• Its predecessor doesn’t define anything

if (c)

z=x

z=1

x=y+z

x=y+1 
y=2*z 
if (d)

{c,d,x,y,z} 

{c,d,x,y} 

{c,d,x,y} 
{c,d,x,y} 
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Iteration 1

• Predecessor defines z, but it wasn’t live anyway 

if (c)

z=x

z=1

x=y+z

x=y+1 
y=2*z 
if (d)

{c,d,x,y,z} 

{c,d,x,y} 

{c,d,x,y} 
{c,d,x,y} 

{c,d,x,y} 
{c,d,x,y} 
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Iteration 1

• Predecessor uses z, it is live again 

if (c)

z=x

z=1

x=y+z

x=y+1 
y=2*z 
if (d)

{c,d,x,y,z} 

{c,d,x,y} 

{c,d,x,y} 
{c,d,x,y} 

{c,d,x,y} 
{c,d,x,y} 

{c,d,x,y} 
{c,d,y,z} 
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Iteration 1

• Predecessor of two successors (control flow):  
must assume union of the live variables of each successor

if (c)

z=x

z=1

x=y+z

x=y+1 
y=2*z 
if (d)

{c,d,x,y,z} 

{c,d,x,y} 

{c,d,x,y} 
{c,d,x,y} 

{c,d,x,y} 
{c,d,x,y} 

{c,d,x,y} 
{c,d,y,z} 
{c,d,x,y,z} 
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Iteration 1

• Definition of y 

if (c)

z=x

z=1

x=y+z

x=y+1 
y=2*z 
if (d)

{c,d,x,y,z} 

{c,d,x,y} 

{c,d,x,y} 
{c,d,x,y} 

{c,d,x,y} 
{c,d,x,y} 

{c,d,x,y} 
{c,d,y,z} 
{c,d,x,y,z} 
{c,d,x,y,z} 
{c,d,x,z} 
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Iteration 1

• Use of y, definition of z

if (c)

z=x

z=1

x=y+z

x=y+1 
y=2*z 
if (d)

{c,d,x,y,z} 

{c,d,x,y} 

{c,d,x,y} 
{c,d,x,y} 

{c,d,x,y} 
{c,d,x,y} 

{c,d,x,y} 
{c,d,y,z} 
{c,d,x,y,z} 
{c,d,x,y,z} 
{c,d,x,z} 
{c,d,y,z} 
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End of iteration 1

• We’ve covered all points, but something changed 
• Repeat from the start... 

if (c)

z=x

z=1

x=y+z

x=y+1 
y=2*z 
if (d)

{c,d,x,y,z} 

{c,d,x,y} 

{c,d,x,y} 
{c,d,x,y} 

{c,d,x,y} 
{c,d,x,y} 

{c,d,x,y} 
{c,d,y,z} 
{c,d,x,y,z} 
{c,d,x,y,z} 
{c,d,x,z} 
{c,d,y,z} 
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Iteration 2

• The union of the two successors here is different 

if (c)

z=x

z=1

x=y+z

x=y+1 
y=2*z 
if (d)

{c,d,x,y,z} 

{c,d,x,y} 

{c,d,x,y,z} 
{c,d,x,y} 

{c,d,x,y} 
{c,d,x,y} 

{c,d,x,y} 
{c,d,y,z} 
{c,d,x,y,z} 
{c,d,x,y,z} 
{c,d,x,z} 
{c,d,y,z} 
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Iteration 2

• Propagate it to the predecessor 

if (c)

z=x

z=1

x=y+z

x=y+1 
y=2*z 
if (d)

{c,d,x,y,z} 

{c,d,x,y} 

{c,d,x,y,z} 
{c,d,x,y,z} 

{c,d,x,y} 
{c,d,x,y} 

{c,d,x,y} 
{c,d,y,z} 
{c,d,x,y,z} 
{c,d,x,y,z} 
{c,d,x,z} 
{c,d,y,z} 

49
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Iteration 2

• ...and again, until we’ve been through all nodes...  
(then repeat, because something changed) 

if (c)

z=x

z=1

x=y+z

x=y+1 
y=2*z 
if (d)

{c,d,x,y,z} 

{c,d,x,y} 

{c,d,x,y,z} 
{c,d,x,y,z} 

{c,d,x,y,z} 
{c,d,x,y} 

{c,d,x,y} 
{c,d,y,z} 
{c,d,x,y,z} 
{c,d,x,y,z} 
{c,d,x,z} 
{c,d,y,z} 

5050
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Iteration 3

• Nothing changes, we have reached a fixed point 

if (c)

z=x

z=1

x=y+z

x=y+1 
y=2*z 
if (d)

{c,d,x,y,z} 

{c,d,x,y} 

{c,d,x,y,z} 
{c,d,x,y,z} 

{c,d,x,y,z} 
{c,d,x,y} 

{c,d,x,y} 
{c,d,y,z} 
{c,d,x,y,z} 
{c,d,x,y,z} 
{c,d,x,z} 
{c,d,y,z} 

515151
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Between the lines

• Every instruction implies a constraint equation 
• Live before = live after – what it defines + what it uses  

• Everywhere control flows join, there is another constraint equation 
• Live after = sum of what’s live at all successors  

• The framework for data flow analysis simply uses different instances of 
this pattern  

• Different constraint equations capture different information  
• Different split/join behavior follows from the type of information  
• May work forward or backward (liveness propagates backwards)  

• We’ll look at a handful of instances next week 
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What’s next?

• Optimizations in detail: data-flow analyses 
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