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Compiler Construction
Lecture 16: Introduction to optimizations

Michael Engel



Overview

* Optimizations
 Definition, objectives, location in the compiler tool flow
« QObtaining and applying evaluation criteria
« Common vs. worst case
« Optimization properties
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Optimization

« What do we mean when we talk about an optimizing compiler?

« Mathematical optimization is the selection of a best element (with
regard to some criterion) from some set of available alternatives

 With software, it is often hard to find a real optimum

« Compiler "optimizations” try to minimize or maximize some
attributes of an executable program

 Large search space makes finding the real optimum
Impossible in many cases

* In general, optimization is undecidable, often NP-complete
* Nevertheless, we will continue using the term "optimizations" here
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Why optimization?

 To help programmers...
* They (try to...) write modular, clean, high-level programs
« Compiler generates efficient, high-performance assembly
* Programmers don’t write optimal code

 High-level languages make avoiding redundant computation
inconvenient or impossible

-e.g. A[i][j] = A[i]l[j] + 1
 Architectural independence

« Optimal code depends on features not expressed to the programmer
* Modern architectures assume optimization

« Important: Ensure safety of optimizations

» Optimizations must not change the meaning (semantics) of a
program!
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Why optimization?

Code generated from simple AST
traversal (+IR transformation) is
often quite inefficient

int foo(int w) { gcc -00
int x, y, z;

X = 3 + 5;
y = X * w;
z =y - 0;
return z * 4; gcc -03
}
.globl _foo
_foo:
LFBO:
movl %edi, %eax
sall S5, %eax
ret
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_foo:
LFBO:

LCFIO:

LCFI1:

LCFI2:

.globl _foo

pushg %rbp

mov( %rsp, %rbp

movl %edi, -20(%rbp)
movl $8, -4(%rbp)
movl -4(%rbp), %eax
imull  -20(%rbp), %eax
movl %eax, -8(%rbp)
movl -8(%rbp), %eax
movl %eax, -12(%rbp)
movl -12(%rbp), %eax
sall S2, %eax

popq  %rbp

ret
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Optimization objectives

Which optimizations can a compiler try to achieve (examples)?
* Reduce runtime (in seconds)
* Reduce code size (in bytes)
* Reduce power consumption (in Watt)
* Reduce energy consumption (in Joule/Wh)

* Objectives other than runtime relevant in embedded systems
* WWe also call all these objectives "non-functional properties”

* They do not change the semantics of the code, but properties
that influence its execution

» Code optimizations consist of two general stages:
e Analysis: find optimization opportunities
* Transformation: apply code changes
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Optimizations... for what?

Most compiler optimizations consider the common case
» optimize cases providing largest benefit for the average use case
Some applications require optimization for the worst case

* in real-time systems, the worst-case execution time (WCET)
determines if a system can operate safely under given real-time
constraints
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WCET: Worst-Case Execution Time
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Optimizations become more difficult

Many architectural issues to think about
« Exploiting parallelism
* instruction-level (ILP), thread, multi-core, accelerators
 Effective management of memory hierarchy
» Registers [1], Caches (L1, L2, L3), Memory/NUMA, Disk
* Energy modes and heterogeneous multicores

« Dynamic voltage-frequency scaling (DVFS), clock gating,
big.LITTLE architectures

Small architectural changes have big impact — hard to reason about
Example
* Program optimised for CPU with Random cache replacement
« What do you change for new machine with LRU?
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Where to apply optimizations

Source code

IR

ettt
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IR

Many analyses and transformations are general Code
(not dependent on the target machine), so they generation
can be easily applied on the IR level — ‘machine

o code
Some analyses and optimizations are _ |
machine-dependent and better applied | Code
on the machine code level Loptimization

machine-level program
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Optimization approaches

How can a compiler know that a transformation actually leads to an
optimization?
« Simple approach: hope for the best
« Example: "a lower number of instruction results in faster code"
« This has worked surprisingly well for early architectures
* Apply heuristics
» Used in many optimization decisions when concrete data or
models are not available or search space too large

 Examples:

* Inlining decisions, Unrolling decisions, Packed-data (SIMD)
optimization decisions, Instruction selection, Register
allocation, Instruction scheduling, Software pipelining
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Optimization approaches

« Compile, run, measure, change options and repeat... [2,3]
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Optimization approaches

* Integrate models of non-functional parameters into optimization
decisions [4,5,0]
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Example optimization: constant folding

Idea:

if operands are known at compile time, perform the operation
statically (= once, during compilation)

int x = (2 +3) *y @ int x =5 *y
b & false — false

* What performance metric does it improve?

 In general, the question whether an optimization improves
performance is undecidable

« At which compilation step can it be applied?
* Intermediate representation
 After optimizations that create constant expressions
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Example optimization: constant folding
int x = (2 +3) *y 2> int x =5 *y

 When is constant folding safely applicable?
e for Boolean values: yes
e for integer values: almost always yes
e exception: division by zero
e for floating point values: caution
e e.g. rounding effects may lead to numerically different results
e General consideration of safety
 Whether an optimization is safe depends on language semantics.

e Languages that provide weaker guarantees to the programmer
permit more optimizations, but have more ambiguity in their
behavior — see e.g. [/]
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Algebraic simplification

* More general form of constant folding
 Makes use of mathematically sound simplification rules
* |dentities:

a *1 — a
a+0 — a

b | false =& b

e Associativity and commutativity rules:

(a+b)+c— a+ (b+c)

a+hb — b + a

N i i i . . . . . .
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Algebraic simplification
« Combined with constant folding:

(@a+1) +2—> a+(1+2) @ a+3
(2+a) +4—> (a+2)+4—> a+(2+4) > a+6é

* Iteration of these optimizations is useful — but how much?
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Strength reduction

* Replace an expensive operation with a cheaper one:

a* .4 — a<< 2
Division by non-power of 2
a7 ” (a << 3) - a integer constants is more
’ 8], Ch. 10-4
a/ 64 - (a > 6) ’ complex, see [8]

 Effectiveness of this optimization depends on the architecture
« Useful if fast shifter (barrel shifter) is available

clang -00
int foo(int a) { imull  $7, -4(%rbp), %edi
int z;
z = a*7; clang -0O3
return z; leal (,%rdi,8), %eax
1 subl %edi, %eax
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What’s next?

» Optimizations in detail: analyses and transformations
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