B NTNU | sioncindrecnoivay

Compiler Construction
Lecture 16: Introduction to optimizations

Michael Engel

Overview

* Optimizations
 Definition, objectives, location in the compiler tool flow
« QObtaining and applying evaluation criteria
« Common vs. worst case
« Optimization properties

@ NTNU | S oy Compiler Construction 16: Introduction to optimizations 2

Optimization

« What do we mean when we talk about an optimizing compiler?

« Mathematical optimization is the selection of a best element (with
regard to some criterion) from some set of available alternatives

 With software, it is often hard to find a real optimum

« Compiler "optimizations” try to minimize or maximize some
attributes of an executable program

 Large search space makes finding the real optimum
Impossible in many cases

* In general, optimization is undecidable, often NP-complete
* Nevertheless, we will continue using the term "optimizations" here

@ NTNU | S oy Compiler Construction 16: Introduction to optimizations 3

Why optimization?

 To help programmers...
* They (try to...) write modular, clean, high-level programs
« Compiler generates efficient, high-performance assembly
* Programmers don’t write optimal code

 High-level languages make avoiding redundant computation
inconvenient or impossible

-e.g. A[i][j] = A[i]l[j] + 1
 Architectural independence

« Optimal code depends on features not expressed to the programmer
* Modern architectures assume optimization

« Important: Ensure safety of optimizations

» Optimizations must not change the meaning (semantics) of a
program!

@ NTNU | S oy Compiler Construction 16: Introduction to optimizations

Why optimization?

Code generated from simple AST
traversal (+IR transformation) is
often quite inefficient

int foo(int w) { gcc -00
int x, y, z;

X = 3 + 5;
y = X * w;
z =y - 0;
return z * 4; gcc -03
}
.globl _foo
_foo:
LFBO:
movl %edi, %eax
sall S5, %eax
ret

@ NTNU | sanetandrecnoiogy

_foo:
LFBO:

LCFIO:

LCFI1:

LCFI2:

.globl _foo

pushg %rbp

mov(%rsp, %rbp

movl %edi, -20(%rbp)
movl $8, -4(%rbp)
movl -4(%rbp), %eax
imull -20(%rbp), %eax
movl %eax, -8(%rbp)
movl -8(%rbp), %eax
movl %eax, -12(%rbp)
movl -12(%rbp), %eax
sall S2, %eax

popq %rbp

ret

Compiler Construction 16: Introduction to optimizations

5

Optimization objectives

Which optimizations can a compiler try to achieve (examples)?
* Reduce runtime (in seconds)
* Reduce code size (in bytes)
* Reduce power consumption (in Watt)
* Reduce energy consumption (in Joule/Wh)

* Objectives other than runtime relevant in embedded systems
* WWe also call all these objectives "non-functional properties”

* They do not change the semantics of the code, but properties
that influence its execution

» Code optimizations consist of two general stages:
e Analysis: find optimization opportunities
* Transformation: apply code changes

@ NTNU | S oy Compiler Construction 16: Introduction to optimizations 6

Optimizations... for what?

Most compiler optimizations consider the common case
» optimize cases providing largest benefit for the average use case
Some applications require optimization for the worst case

* in real-time systems, the worst-case execution time (WCET)
determines if a system can operate safely under given real-time
constraints

8‘ worst-case performance >
£
° d SyStem = worst-case guarantee
o
that reaCtS _5 N The actual WCET)
toolate can 3| rower | Minimal Cpper bounded | obasmed Upper
E| timing BCET execution execution WCET timing
cause a 2| bound time time bound
catastrophe
° think Of airbag G)l “ “““III L, T » pr tlm;
. measured execution times
controls in
“ possible execution times >
a car « timing predictability >
[Wilhelm+-08]

WCET: Worst-Case Execution Time
BCET: Best-Case Execution Time

E NTNU ‘ 'S\lc?g\;]vfé ACET: Average-Case Execution Time .

Optimizations become more difficult

Many architectural issues to think about
« Exploiting parallelism
* instruction-level (ILP), thread, multi-core, accelerators
 Effective management of memory hierarchy
» Registers [1], Caches (L1, L2, L3), Memory/NUMA, Disk
* Energy modes and heterogeneous multicores

« Dynamic voltage-frequency scaling (DVFS), clock gating,
big.LITTLE architectures

Small architectural changes have big impact — hard to reason about
Example
* Program optimised for CPU with Random cache replacement
« What do you change for new machine with LRU?

@ NTNU | S oy Compiler Construction 16: Introduction to optimizations

8

Where to apply optimizations

Source code

IR

ettt

. [~ . .) :‘ ' — /
Lexical Syntax Semantic * IR '?‘
analysis| " }analysis - analysis ~ | generation /Eoptimization

IR

Many analyses and transformations are general Code
(not dependent on the target machine), so they generation
can be easily applied on the IR level — ‘machine

o code
Some analyses and optimizations are _ |
machine-dependent and better applied | Code
on the machine code level Loptimization

machine-level program

@ NTNU | S oy Compiler Construction 16: Introduction to optimizations 9

Optimization approaches

How can a compiler know that a transformation actually leads to an
optimization?
« Simple approach: hope for the best
« Example: "a lower number of instruction results in faster code"
« This has worked surprisingly well for early architectures
* Apply heuristics
» Used in many optimization decisions when concrete data or
models are not available or search space too large

 Examples:

* Inlining decisions, Unrolling decisions, Packed-data (SIMD)
optimization decisions, Instruction selection, Register
allocation, Instruction scheduling, Software pipelining

@ NTNU | S oy Compiler Construction 16: Introduction to optimizations 10

Optimization approaches

« Compile, run, measure, change options and repeat... [2,3]

-4
Set compiler "flags" : Database, ‘ R
e C?s vﬁtches 9 g neural network or g
. . netic algorithm
selecting options) | & genetic aigo s Measu:_'e
non-functional
parameter(s) -
L |/’\/\/\
e % 0 :
Program source Optimizing Executable Hardware @
code compiler program
Error

@ NTNU | S oy Compiler Construction 16: Introduction to optimizations 11

Optimization approaches

* Integrate models of non-functional parameters into optimization
decisions [4,5,0]

AN
N \ Execute Benchmarks
L
control | Measure
optimizations
Program source Optimizing Executable Hardware
code compiler program

@ NTNU | S oy Compiler Construction 16: Introduction to optimizations 12

Example optimization: constant folding

Idea:

if operands are known at compile time, perform the operation
statically (= once, during compilation)

int x = (2 +3) *y @ int x =5 *y
b & false — false

* What performance metric does it improve?

 In general, the question whether an optimization improves
performance is undecidable

« At which compilation step can it be applied?
* Intermediate representation
 After optimizations that create constant expressions

@ NTNU | S oy Compiler Construction 16: Introduction to optimizations

13

Example optimization: constant folding
int x = (2 +3) *y 2> int x =5 *y

 When is constant folding safely applicable?
e for Boolean values: yes
e for integer values: almost always yes
e exception: division by zero
e for floating point values: caution
e e.g. rounding effects may lead to numerically different results
e General consideration of safety
 Whether an optimization is safe depends on language semantics.

e Languages that provide weaker guarantees to the programmer
permit more optimizations, but have more ambiguity in their
behavior — see e.g. [/]

@ NTNU | S oy Compiler Construction 16: Introduction to optimizations 14

Algebraic simplification

* More general form of constant folding
 Makes use of mathematically sound simplification rules
* |dentities:

a *1 — a
a+0 — a

b | false =& b

e Associativity and commutativity rules:

(a+b)+c— a+ (b+c)

a+hb — b + a

N i i i
@ NTNU | S oy Compiler Construction 16: Introduction to optimizations 15

Algebraic simplification
« Combined with constant folding:

(@a+1) +2—> a+(1+2) @ a+3
(2+a) +4—> (a+2)+4—> a+(2+4) > a+6é

* Iteration of these optimizations is useful — but how much?

@ NTNU | S oy Compiler Construction 16: Introduction to optimizations 16

Strength reduction

* Replace an expensive operation with a cheaper one:

a* .4 — a<< 2
Division by non-power of 2
a7 ” (a << 3) - a integer constants is more
’ 8], Ch. 10-4
a/ 64 - (a > 6) ’ complex, see [8]

 Effectiveness of this optimization depends on the architecture
« Useful if fast shifter (barrel shifter) is available

clang -00
int foo(int a) { imull $7, -4(%rbp), %edi
int z;
z = a*7; clang -0O3
return z; leal (,%rdi,8), %eax
1 subl %edi, %eax

@ NTNU | S oy Compiler Construction 16: Introduction to optimizations

17

What’s next?

» Optimizations in detail: analyses and transformations

References

[1] Lars Wehmeyer, Manoj Kumar Jain, Stefan Steinke, Peter Marwedel and M. Balakrishnan.
Analysis of the Influence of Register File Size on Energy Consumption, Code Size and Execution Time.
IEEE TCAD 20-11, November 2001

[2] Pan, Zhelong & Eigenmann, R.. (2006).
Fast and effective orchestration of compiler optimizations for automatic performance tuning.
Proceedings of CGO 2006. DOI 10.1109/CG0.2006.38.

[3] Paul Lokuciejewski, Sascha Plazar, Heiko Falk, Peter Marwedel and Lothar Thiele.
Approximating Pareto optimal compiler optimization sequences-a trade-off between WCET, ACET and code size.
Software: Practice and Experience May 2011, DOI 10.1002/spe.1079

[4] Tiwari, V. and Malik, S. And Wolfe, A.
Power Analysis of Embedded Software: A FirstStep towards Software Power Minimization
IEEE, Trans. On VLSI Systems, December,1994

[5] Stefan Steinke, Markus Knauer, Lars Wehmeyer and Peter Marwedel.
An Accurate and Fine Grain Instruction-Level Energy Model Supporting Software Optimizations.
In PATMOS 2001, Yverdon (Switzerland), September 2001

[6] Neville Grech et al., 2015
Static analysis of energy consumption for LLVM IR programs
In Proceedings SCOPES ’15. ACM. DOI:https://doi.org/10.1145/2764967.2764974

[7] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama. 2013.
Towards optimization-safe systems: analyzing the impact of undefined behavior.
In Proceedings of SOSP '13. ACM. DOI:https://doi.org/10.1145/2517349.2522728

[8] Henry S. Warren, Jr. Hacker’s Delight, 2nd Edition, Addison-Wesley 2012, ISBN 978-0-321-84268-8

@ NTNU | S oy Compiler Construction 16: Introduction to optimizations

18

https://doi.org/10.1145/2764967.2764974
https://doi.org/10.1145/2517349.2522728

