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Overview
• Optimizations 

• Definition, objectives, location in the compiler tool flow 
• Obtaining and applying evaluation criteria 
• Common vs. worst case 
• Optimization properties
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Optimization

• What do we mean when we talk about an optimizing compiler? 

• Mathematical optimization is the selection of a best element (with 
regard to some criterion) from some set of available alternatives 

• With software, it is often hard to find a real optimum 
• Compiler "optimizations" try to minimize or maximize some 

attributes of an executable program 
• Large search space makes finding the real optimum 

impossible in many cases 
• In general, optimization is undecidable, often NP-complete 

• Nevertheless, we will continue using the term "optimizations" here
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Why optimization?

• To help programmers… 
• They (try to…) write modular, clean, high-level programs  

• Compiler generates efficient, high-performance assembly 
• Programmers don’t write optimal code  

• High-level languages make avoiding redundant computation 
inconvenient or impossible  
• e.g. A[i][j] = A[i][j] + 1  

• Architectural independence 
• Optimal code depends on features not expressed to the programmer 
• Modern architectures assume optimization 

• Important: Ensure safety of optimizations 
• Optimizations must not change the meaning (semantics) of a 

program!



Compiler Construction 16: Introduction to optimizations 5

Why optimization?

Code generated from simple AST  
traversal (+IR transformation) is  
often quite inefficient

int foo(int w) { 
  int x, y, z; 
  x = 3 + 5; 
  y = x * w; 
  z = y - 0; 
  return z * 4; 
} 

        .globl _foo 
_foo: 
LFB0: 
        pushq   %rbp 
LCFI0: 
        movq    %rsp, %rbp 
LCFI1: 
        movl    %edi, -20(%rbp) 
        movl    $8, -4(%rbp) 
        movl    -4(%rbp), %eax 
        imull   -20(%rbp), %eax 
        movl    %eax, -8(%rbp) 
        movl    -8(%rbp), %eax 
        movl    %eax, -12(%rbp) 
        movl    -12(%rbp), %eax 
        sall    $2, %eax 
        popq    %rbp 
LCFI2: 
        ret

        .globl _foo 
_foo: 
LFB0: 
        movl    %edi, %eax 
        sall    $5, %eax 
        ret

gcc -O0

gcc -O3
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Optimization objectives

Which optimizations can a compiler try to achieve (examples)? 
• Reduce runtime (in seconds) 
• Reduce code size (in bytes) 
• Reduce power consumption (in Watt) 
• Reduce energy consumption (in Joule/Wh) 

• Objectives other than runtime relevant in embedded systems 
• We also call all these objectives "non-functional properties" 

• They do not change the semantics of the code, but properties 
that influence its execution 

• Code optimizations consist of two general stages: 
• Analysis: find optimization opportunities 
• Transformation: apply code changes
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What is the “Execution Time” of a program?

Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

What is the “Execution Time” of a Program?The Worst-Case Execution-Time Problem • 36:3

Fig. 1. Basic notions concerning timing analysis of systems. The lower curve represents a subset
of measured executions. Its minimum and maximum are the minimal and maximal observed exe-
cution times, respectively. The darker curve, an envelope of the former, represents the times of all
executions. Its minimum and maximum are the best- and worst-case execution times, respectively,
abbreviated BCET and WCET.

exhaustively explore all possible executions and thereby determine the exact
worst- and best-case execution times.

Today, in most parts of industry, the common method to estimate execution-
time bounds is to measure the end-to-end execution time of the task for a subset
of the possible executions—test cases. This determines the minimal observed
and maximal observed execution times. These will, in general, overestimate the
BCET and underestimate the WCET and so are not safe for hard real-time
systems. This method is often called dynamic timing analysis.

Newer measurement-based approaches make more detailed measurements
of the execution time of different parts of the task and combine them to give
better estimates of the BCET and WCET for the whole task. Still, these methods
are rarely guaranteed to give bounds on the execution time.

Bounds on the execution time of a task can be computed only by methods that
consider all possible execution times, that is, all possible executions of the task.
These methods use abstraction of the task to make timing analysis of the task
feasible. Abstraction loses information, so the computed WCET bound usually
overestimates the exact WCET and vice versa for the BCET. The WCET bound
represents the worst-case guarantee the method or tool can give. How much
is lost depends both on the methods used for timing analysis and on overall
system properties, such as the hardware architecture and characteristics of the
software. These system properties can be subsumed under the notion of timing
predictability.

The two main criteria for evaluating a method or tool for timing analysis
are thus safety—does it produce bounds or estimates?— and precision—are the
bounds or estimates close to the exact values?

Performance prediction is also required for application domains that do not
have hard real-time characteristics. There, systems may have deadlines, but
are not required to absolutely observe them. Different methods may be applied
and different criteria may be used to measure the quality of methods and tools.

ACM Transactions on Embedded Computing Systems, Vol. 7, No. 3, Article 36, Publication date: April 2008.
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WCET: Worst-Case Execution Time
BCET: Best-Case Execution Time
ACET: Average-Case Execution Time

Embedded Real-Time Systems SS 2010, Lecture 15 Slide 5

I The WCET/BCET ist the longest/shortest execution time
possible for a program

I Must consider all possible inputs—including perhaps inputs
that violate specification

Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

Why may we care about the WCET?

We are interested in WCET to . . .

I perform schedulability anaylsis

I ensure meeting deadlines

I assess resource needs for real-time systems

WCET-Accuracy may be safety-critical!

Embedded Real-Time Systems SS 2010, Lecture 15 Slide 6

Worst-Case Execution Time Analysis

Types of Execution Times
Measuring vs. Analyzing
Flow Analysis
Low-Level Analysis
Calculation

And why may we care about the BCET?

We are interested in BCET to . . .

I benchmark hardware

I assess code quality

I assess resource needs for non/soft real-time systems

I ensure meeting live lines

Embedded Real-Time Systems SS 2010, Lecture 15 Slide 7

WCET: Worst-Case Execution Time
BCET: Best-Case Execution Time
ACET: Average-Case Execution Time

The WCET/BCET is the longest/shortest execution time possible for a program.
Must consider all possible inputs—including perhaps inputs that violate specification.
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Optimizations… for what?

Most compiler optimizations consider the common case 
• optimize cases providing largest benefit for the average use case 

Some applications require optimization for the worst case 
• in real-time systems, the worst-case execution time (WCET) 

determines if a system can operate safely under given real-time 
constraints 

• a system  
that reacts 
too late can 
cause a  
catastrophe 

• think of airbag 
controls in  
a car
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Optimizations become more difficult

Many architectural issues to think about 
• Exploiting parallelism 

• instruction-level (ILP), thread, multi-core, accelerators 
• Effective management of memory hierarchy 

• Registers [1], Caches (L1, L2, L3), Memory/NUMA, Disk  
• Energy modes and heterogeneous multicores 

• Dynamic voltage-frequency scaling (DVFS), clock gating, 
big.LITTLE architectures 

Small architectural changes have big impact – hard to reason about  
Example 

• Program optimised for CPU with Random cache replacement 
• What do you change for new machine with LRU? 
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Where to apply optimizations
Source code

machine-level program

Code
optimization

IR

machine
code

Many analyses and transformations are general 
(not dependent on the target machine), so they  
can be easily applied on the IR level 

Some analyses and optimizations are 
machine-dependent and better applied 
on the machine code level

Lexical 
analysis

Syntax 
analysis

Semantic 
analysis

IR 
generation

IR
optimization

IR

Code 
generation

IR
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Optimization approaches

How can a compiler know that a transformation actually leads to an 
optimization? 
• Simple approach: hope for the best 

• Example: "a lower number of instruction results in faster code" 
• This has worked surprisingly well for early architectures 

• Apply heuristics 
• Used in many optimization decisions when concrete data or 

models are not available or search space too large 
• Examples: 

• Inlining decisions, Unrolling decisions, Packed-data (SIMD) 
optimization decisions, Instruction selection, Register 
allocation, Instruction scheduling, Software pipelining
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Optimization approaches

• Compile, run, measure, change options and repeat… [2,3]

Program source
code

Optimizing
compiler

Executable
program Hardware

Error

Measure  
non-functional
parameter(s)

Set compiler "flags"  
(switches  

selecting options)

Database,
neural network or
genetic algorithms
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Optimization approaches

• Integrate models of non-functional parameters into optimization 
decisions [4,5,6]

Program source
code

Optimizing
compiler

Executable
program Hardware

56:14 S. Kerrison and K. Eder

Fig. 5. Instruction power data and interinstruction overhead calculation for 32-bit data; dashed lines indi-
cate a change in operand count.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 3, Article 56, Publication date: April 2015.

E = C ⋅ V2 ⋅ f
BenchmarksExecute

Measure

Model

control
optimizations

✔



Compiler Construction 16: Introduction to optimizations 13

Example optimization: constant folding

Idea:  
if operands are known at compile time, perform the operation 
statically (= once, during compilation)

int x = (2 + 3) * y → int x = 5 * y 

b & false           → false   

• What performance metric does it improve?  
• In general, the question whether an optimization improves 

performance is undecidable 
• At which compilation step can it be applied? 

• Intermediate representation 
• After optimizations that create constant expressions
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Example optimization: constant folding
int x = (2 + 3) * y → int x = 5 * y

• When is constant folding safely applicable? 
• for Boolean values: yes  
• for integer values: almost always yes 

• exception: division by zero 
• for floating point values: caution 

• e.g. rounding effects may lead to numerically different results 
• General consideration of safety 

• Whether an optimization is safe depends on language semantics. 
• Languages that provide weaker guarantees to the programmer 

permit more optimizations, but have more ambiguity in their 
behavior – see e.g. [7]
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Algebraic simplification

a * 1     →  a 

a + 0     →  a 

b | false →  b

• More general form of constant folding 
• Makes use of mathematically sound simplification rules 

• Identities: 

• Associativity and commutativity rules:

(a + b) + c →  a + (b + c) 

a + b       →  b + a
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Algebraic simplification

(a + 1) + 2 →  a + (1 + 2) →  a + 3 

(2 + a) + 4 →  (a + 2) + 4 →  a + (2 + 4) →  a + 6

• Combined with constant folding:

• Iteration of these optimizations is useful – but how much?
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Strength reduction

a * 4     →  a << 2 

a * 7     →  (a << 3) - a 

a / 64    →  (a >> 6)

• Replace an expensive operation with a cheaper one:

• Effectiveness of this optimization depends on the architecture 
• Useful if fast shifter (barrel shifter) is available

int foo(int a) { 
  int z; 
  z = a*7; 
  return z; 
}

  leal (,%rdi,8), %eax 
  subl %edi, %eax

  imull   $7, -4(%rbp), %edi

clang -O3

clang -O0

Division by non-power of 2 
integer constants is more 
complex, see [8], Ch. 10-4
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What’s next?

• Optimizations in detail: analyses and transformations 

References 
[1] Lars Wehmeyer, Manoj Kumar Jain, Stefan Steinke, Peter Marwedel and M. Balakrishnan. 
     Analysis of the Influence of Register File Size on Energy Consumption, Code Size and Execution Time.  
     IEEE TCAD 20-11, November 2001 
[2] Pan, Zhelong & Eigenmann, R.. (2006).  
     Fast and effective orchestration of compiler optimizations for automatic performance tuning.  
     Proceedings of CGO 2006. DOI 10.1109/CGO.2006.38.  
[3] Paul Lokuciejewski, Sascha Plazar, Heiko Falk, Peter Marwedel and Lothar Thiele. 
     Approximating Pareto optimal compiler optimization sequences-a trade-off between WCET,  ACET and code size.  
     Software: Practice and Experience May 2011, DOI 10.1002/spe.1079 
[4] Tiwari, V. and Malik, S. And Wolfe, A. 
     Power Analysis of Embedded Software: A FirstStep towards Software Power Minimization 
     IEEE, Trans. On VLSI Systems, December,1994 
[5] Stefan Steinke, Markus Knauer, Lars Wehmeyer and Peter Marwedel. 
     An Accurate and Fine Grain Instruction-Level Energy Model Supporting Software Optimizations. 
     In PATMOS 2001, Yverdon (Switzerland), September 2001 
[6] Neville Grech et al., 2015 
     Static analysis of energy consumption for LLVM IR programs 
     In Proceedings SCOPES ’15. ACM. DOI:https://doi.org/10.1145/2764967.2764974 
[7] Xi Wang, Nickolai Zeldovich, M. Frans Kaashoek, and Armando Solar-Lezama. 2013.  
     Towards optimization-safe systems: analyzing the impact of undefined behavior.  
     In Proceedings of SOSP ’13. ACM. DOI:https://doi.org/10.1145/2517349.2522728 
[8] Henry S. Warren, Jr. Hacker’s Delight, 2nd Edition, Addison-Wesley 2012, ISBN 978-0-321-84268-8

https://doi.org/10.1145/2764967.2764974
https://doi.org/10.1145/2517349.2522728

