
Compiler Construction
Lecture 13: Intermediate representations and SSA

Michael Engel

Compiler Construction 13: IR and SSA 2

Overview
• More on intermediate representations

• Efficient implementation
• Translating an AST into linear IR
• Static single assignment (SSA) form

Compiler Construction 13: IR and SSA 3

Three-address code again

• Most operations in three-address code (TAC) have the form
i = j op k

• one operator (op), two operands (j and k) and one result (i)
• some operators will need fewer arguments

• e.g. immediate loads and jumps
• sometimes, an op with more than three addresses is needed

• Three-address code is reasonably compact
• most ops consist of four items: an operation and three names
• both the operation and the names are drawn from limited sets
• operations typically require 1 or 2 bytes
• names are typically represented by integers or table indices

• in either case, 4 bytes is usually enough
• Data structure choices affect the costs of operations on IR

Intermediate
code

Compiler Construction 13: IR and SSA 4

TAC example

• TAC resembles a RISC-like register machine
• Operands have to be loaded into registers
• Operations (other than load/store) operate on register values
• Results are delivered in registers

• Limited constraints for naming/allocating registers compared to real
machines

Intermediate
code

t1 ← 2
t2 ← b
t3 ← t1 × t2
t4 ← a
t5 ← t4 - t3

TAC code for a - 2 × b

MOV R1, #2 // R1=2
LDR R2, =b
LDR R2, [R2] // R2=b
MULU R3, R1, R2 // R3=2*b
LDR R4, =a
LDR R4, [R4] // R4=a
SUB R5, R4, R3 // R5=R4-R3=a-2*b

ARM assembler code for a - 2 × b

Compiler Construction 13: IR and SSA 5

Representing Linear IRs

• Simple array: most simple form
• short array to represent each basic block
• often, the compiler writer places the array inside CFG nodes

• Array of pointers groups quadruples into a block
• the pointer array can be contained in a CFG node

• Linked list links the quadruples together to form a list
• requires less storage in the CFG node
• at the cost of restricting accesses to sequential traversals

Intermediate
code

t1 ← 2
t2 ← b
t3 ← t1 × t2
t4 ← a
t5 ← t4 - t3

TAC code for
a - 2 × b

Simple array Array of pointers Linked List

Target Op Arg1 Arg2

t1 ← 2
t2 ← b
t3 × t1 t2
t4 ← a
t5 - t4 t3

t1

t2

t3

t4

t5

← 2

← b

× t1 t2

← a

← t4 t3

t1

t2

t3

t4

t5

← 2

← b

× t1 t2

← a

← t4 t3

Compiler Construction 13: IR and SSA 6

Tradeoffs of different represent.
• Use case: optimization of code
• Example: rearranging the code in this block

• What are the costs incurred for each
representation?

• Op 1 loads a constant into a register
• on most machines this translates directly

into an immediate load operation
• Ops 2 and 4 load values from memory

• on most machines this might incur a multicycle delay
(unless the values are already in the primary cache)

• To hide some of the delay, the instruction scheduler might move
the loads of b and a in front of the immediate load of 2
• What is the cost of doing this?

Intermediate
code

1 t1 ← 2
2 t2 ← b
3 t3 ← t1 × t2
4 t4 ← a
5 t5 ← t4 - t3

Compiler Construction 13: IR and SSA 7

Tradeoffs of different repres.
Simple array: move 2 ahead of 1

Intermediate
code

1 t1 ← 2
2 t2 ← b
3 t3 ← t1 × t2
4 t4 ← a
5 t5 ← t4 - t3

Target Op Arg1 Arg2
t1 ← 2
t2 ← b
t3 × t1 t2
t4 ← a
t5 - t4 t3

Target Op Arg1 Arg2

t2 ← b
t2 ← b
t3 × t1 t2
t4 ← a
t5 - t4 t3

t1 ← 2

save

move

Target Op Arg1 Arg2
t2 ← b
t1 ← 2
t3 × t1 t2
t4 ← a
t5 - t4 t3

copy

Compiler Construction 13: IR and SSA 8

Tradeoffs of different repres.
Array of pointers: move 2 ahead of 1

Intermediate
code

1 t1 ← 2
2 t2 ← b
3 t3 ← t1 × t2
4 t4 ← a
5 t5 ← t4 - t3

save only
pointer

t1

t2

t3

t4

t5

← 2

← b

× t1 t2

← a

← t4 t3

t1

t2

t3

t4

t5

← 2

← b

× t1 t2

← a

← t4 t3

t1

t2

t3

t4

t5

← 2

← b

× t1 t2

← a

← t4 t3

copy

move

Compiler Construction 13: IR and SSA 9

Tradeoffs of different repres.
Linked list: move 2 ahead of 1

Intermediate
code

1 t1 ← 2
2 t2 ← b
3 t3 ← t1 × t2
4 t4 ← a
5 t5 ← t4 - t3

save pointer to
element to move

t1

t2

t3

t4

t5

← 2

← b

× t1 t2

← a

← t4 t3

t1

t2

t3

t4

t5

← 2

← b

× t1 t2

← a

← t4 t3

t1

t2

t3

t4

t5

← 2

← b

× t1 t2

← a

← t4 t3

copy
pointers
back

move

save pointers to
neighbor elements

Compiler Construction 13: IR and SSA 10

A closer look at TAC
• Most modern computers (still) try to look like a von Neumann

machine (even though they are far more complex internally)
• A von Neumann machine has three main components:

• Control unit
• Data path + ALU
• Unified memory for instructions and data

• A clock controls the execution of instructions
• Instruction fetch (from memory, addressed py PC)
• Operand fetch (from memory addresses encoded in instr.)
• Execute the instruction
• Write back the results

Intermediate
code

Control Data path
ALU

Memory
(program + data)

CPU

RAM

Compiler Construction 13: IR and SSA 11

Instruction classes
We need
• Instructions for control unit
• Data for data unit/ALU

• Instructions and data are in memory
• we can use symbolic names for these instead of

numeric addresses:
• Labels for instructions
• Names for variables

• We can categorize instructions:

Intermediate
code

Binary operations
Unary operations
Copy operations

Load/store operations

Unconditional jumps
Conditional jumps
Procedure calls

Math, logic,
data movement

Control
flow

Compiler Construction 13: IR and SSA 12

TAC is a low-level IR
"Three address" since each operation deals with at most three
addresses in memory (+ the instruction itself):

• Binary operations: a = b OP c OP is ADD, MUL, SUB, …
• Unary operations: a = OP b OP is NEG, MINUS, …
• Copy: a = b
• Load/store: x = &y address of y

 x = *y value at addres y
 x[i] = y address + offset

Intermediate
code

Compiler Construction 13: IR and SSA 13

Control flow in TAC
Control flow is equally simple:

• Label: L: named address of next instruction
• Unconditional jump: jump L go to L and get next instruction
• Conditional jump: if x goto L go to L if x is TRUE

 ifFALSE x goto L go to L if x is FALSE
 if x<y goto L comparison operators
 if x>=y goto L comparison operators
 if x!=y goto L comparison operators

• Call and return: param x x is parameter in next call
 call L similar to jump
 return ...to where we came from

Intermediate
code

Compiler Construction 13: IR and SSA 14

Translating to TAC
Translation of binary operators:
we make use of the recursive nature of our AST
• No matter how complex the contents of expressions

e1 and e2 are, this can be translated from

t = T[e1 OP e2]

into

t1 = T[e1]
t2 = T[e2]
t3 = t1 OP t2

• First, (recursively) translate e1 and store its result
• then, (recursively) translate e2 and store its result
• finally, combine the two stored results using OP

Semantic
analysis

IR
generation

"T" = "translation"

OP

e1 e2

Compiler Construction 13: IR and SSA 15

Linearizing the program
We traverse the AST in depth-first order:

t1 = 1
t2 = 3
t3 = t1 + t2

Semantic
analysis

IR
generation

*

+ 5

1 3

Compiler Construction 13: IR and SSA 16

Linearizing the program
We traverse the AST in depth-first order:

t1 = 1
t2 = 3
t3 = t1 + t2

Then we continue further up the tree:
• The result of the "+" operation is in t3
t4 = t3
t5 = 5
t6 = t4 * t5

• The final result can be copied:
t = t6

Semantic
analysis

IR
generation

*

+ 5

1 3

Compiler Construction 13: IR and SSA 17

Nested expressions
Combine the local parts which represent sub-trees:

Semantic
analysis

IR
generation

t1 = 1
t2 = 3
t3 = t1 + t2

t4 = t3
t5 = 5
t6 = t4 * t5

T[1+3]

T[t3*5]

T[(1+3)*5] t = T[(1+3)*5]

t = t6

Compiler Construction 13: IR and SSA 18

Statement sequences
Straightforward, since they are already sequenced:

Semantic
analysis

IR
generation

T[s1; s2; s3; …]

becomes

T[s1]
T[s2]
T[s3]
…

Simply translate one statement after the other and
append their translations in order

Compiler Construction 13: IR and SSA 19

Assignments
Assignments require copying a value:

Semantic
analysis

IR
generation

T[v=e]

requires us to
• obtain the result of e
• put the result into v

T[v=e] -> t = T[e]
 v = t

=

v e

Compiler Construction 13: IR and SSA 20

Array assignment
We need to calculate the index (address offset):

Semantic
analysis

IR
generation

T[v[e1]=e2]

requires us to
• compute the index expression e1
• compute the expression e2
• put the result into v[e1]

T[v[e1]=e2] -> t1 = T[e1]
 t2 = T[e2]
 v[t1] = t2

=

v[e1] e2

v e1

Compiler Construction 13: IR and SSA 21

Conditionals
These require control flow:

Semantic
analysis

IR
generation

T[if(e) then s]

becomes

 t1 = T[e]
 ifFALSE t1 goto Lend
 T[s]
Lend:
 (translation of next statement follows here)

if

e s

condition statement

Compiler Construction 13: IR and SSA 22

Conditionals Semantic
analysis

IR
generation

If e is true, control goes through s
If e is false, control skips past it

 t1 = T[e]
 ifFALSE t1 goto Lend
 T[s]
Lend:

if

e s

condition statement
t1 = true

t1 = false

Compiler Construction 13: IR and SSA 23

Conditionals + else Semantic
analysis

IR
generation

 Easy to derive:

 t1 = T[e]
 ifFALSE t1 goto Lelse
 T[s1]
 jump LEnd
Lelse:
 T[s2]
Lend:

if

e s2t1 = true

t1 = false

s1

Compiler Construction 13: IR and SSA 24

While loops Semantic
analysis

IR
generation

The condition has to be checked at
the beginning of each iteration:
 T[while(e) do s]
becomes
Ltest:
 t1 = T[e]
 ifFALSE t1 goto Lend
 T[s]
 jump Ltest
Lend:

while

e s

t1 = true

t1 = false

Compiler Construction 13: IR and SSA 25

Different kinds of loop
For and repeat loops can be transformed into while loops:

Semantic
analysis

IR
generation

for (i=0; i<10; i++) {
 dosomething();
}

i=0;
while (i<10) {
 dosomething();
 i = i+1;
}

do {
 dosomething();
} while(x);

dosomething();
while (x) {
 dosomething();
}

Compiler Construction 13: IR and SSA 26

Switch Semantic
analysis

IR
generation

switch

e v1 s1 v2 s2 v3 s3

T[switch(e) { case v1:s1; … case vn:sn }
can become
 t = T[e]
 ifFALSE (t=v1) goto L1
 T[s1]
L1: ifFALSE (t=v2) goto L2
 T[s2]
L2: …
 ifFALSE (t=vn) goto Lend
 T[sn]
Lend:

Compiler Construction 13: IR and SSA 27

Switch using jump table Semantic
analysis

IR
generation

switch

e v1 s1 v2 s2 v3 s3

T[switch(e){ case v1:s1; … case vn:sn]
can also become
 t = T[e]
 jump table[t]
Lv1:T[s1]
Lv2:T[s2]
…
Lvn:T[sn]
Lend:

Here, the compiler has to provide a jump table which maps the
conditions v1, v2, … vn to their respective labels Lv1, Lv2, … Lvn

This models the C-like "fall-through"
behavior without a break at the end

of the case.
Otherwise, we would have to insert

"jump Lend" here!

Compiler Construction 13: IR and SSA 28

Using labels Semantic
analysis

IR
generation

if (e1) then s1;
if (e2) then s2;
becomes
 t1 = T[e1]
 ifFALSE t1 goto LEnd1
 T[s1]
LEnd1:
 t2 = T[e2]
 ifFALSE t2 goto LEnd2
 T[s2]
LEnd2:

Labels must be unique
• This can be handled by numbering the statements that generate them:

Compiler Construction 13: IR and SSA 29

Nested statements
if (e1) then if (e2) then a=b requires a bit of care:

Semantic
analysis

IR
generation

t1 = T[e1]
ifFalse (t1) goto Lend1
t2 = T[e2]
ifFalse (t2) goto Lend2
t3 = b
a = t3
Lend2:
Lend1:

Statement

inner if (#2)

outer if (#1)

Compiler Construction 13: IR and SSA 30

Static Single-Assignment Form
• Static single-assignment form (SSA) is a naming discipline that

many modern compilers use to encode information about both
the flow of control and the flow of data values in the program
• names correspond uniquely to specific definition points in the

code
• each name is defined by one operation
• hence the name static single assignment

• SSA abstracts from processor registers
• helps to name intermediate values during compilation

• Each use of a name as an argument in some operation encodes
information about where the value originated
• each textual name refers to a specific definition point

Intermediate
code

Compiler Construction 13: IR and SSA 31

Static Single-Assignment Form
• A program is in SSA form when it meets two constraints:

(1) each definition has a distinct name; and
(2) each use refers to a single definition

• Transforming an IR program to SA form:
• compiler inserts 𝜙 functions at points where different

control-flow paths merge
• it then renames variables to make

the single-assignment property hold

Intermediate
code

x ← …
y ← …
while (x < 100)
 x ← x + 1
 y ← y + x

 x0 ← …
 y0 ← …
 if (x0 >= 100) goto next
loop: x1 ← 𝜙(x0,x2)
 y1 ← 𝜙(y0,y2)
 x2 ← x1 + 1
 y2 ← y1 + x
 if (x0 < 100) goto loop
next: x3 ← 𝜙(x0,x2)
 y3 ← 𝜙(y0,y2)

Compiler Construction 13: IR and SSA 32

Translation of code into SSA form

i = 1;
j = 1;
k = 0;

while (k < 100) {
 if (j < 20) {
 j = i;
 k = k+1;
 } else {
 j = k;
 k = k+2;
 }
}
return j;

i ⇠ 1
j ⇠ 1
k ⇠ 0

if (k < 100)

if (j < 20) return j

j ⇠ i
k ⇠ k+1

j ⇠ k
k ⇠ k+2

Source code
CFG

without SSA
B1

B2

B3 B4

B5 B6

B7Example from [2]

T F

FT

Intermediate
code

Compiler Construction 13: IR and SSA 33

Unique Identifiers: Naive Approach

i = 1;
j = 1;
k = 0;

while (k < 100) {
 if (j < 20) {
 j = i;
 k = k+1;
 } else {
 j = k;
 k = k+2;
 }
}
return j;

i1 ⇠ 1
j1 ⇠ 1
k1 ⇠ 0

if (k1 < 100)

if (j1 < 20) return j1

j5 ⇠ i1
k5 ⇠ k1+1

j6 ⇠ k1
k6 ⇠ k1+2

Source code
CFG

with unique
static variable
assignments

B1

B2

B3 B4

B5 B6

B7

T F

FT

Intermediate
code

Compiler Construction 13: IR and SSA 34

Problem with the Naive Approach

i = 1;
j = 1;
k = 0;

while (k < 100) {
 if (j < 20) {
 j = i;
 k = k+1;
 } else {
 j = k;
 k = k+2;
 }
}
return j;

i1 ⇠ 1
j1 ⇠ 1
k1 ⇠ 0

if (k1 < 100)

if (j1 < 20) return j1

j5 ⇠ i1
k5 ⇠ k1+1

j6 ⇠ k1
k6 ⇠ k1+2

Source code
CFG

with unique
static variable
assignments

B1

B2

B3 B4

B5 B6

B7 Which k is
the right one?

T F

FT

Intermediate
code

Compiler Construction 13: IR and SSA 35

i1 ⇠ 1
j1 ⇠ 1
k1 ⇠ 0

k2 = 𝜙(k1, k7)
j2 = 𝜙(j1, j7)
if (k2 < 100)

if (j2 < 20) return j2

j5 ⇠ i1
k5 ⇠ k2+1

j6 ⇠ k2
k6 ⇠ k2+2

j7 ⇠ 𝜙(j5, j6)
k7 ⇠ 𝜙(k5, k6)

CFG
using SSA

B1

B2

B3 B4

B5 B6

B7

Fixing the Variable Problem
“Which k is the right one?” 
“It depends…”
• Basic block B2 can receive

values for k from B1 and B7

• Similar for variable j

• Fix: introduce a selector
function 𝜙 (phi) that copies
the correct value to a new
intermediate variable
depending on the control
flow:

k2 = 𝜙(k1, k7)
j2 = 𝜙(j1, j7)

T F

FT

Intermediate
code

Compiler Construction 13: IR and SSA 36

i1 ⇠ 1
j1 ⇠ 1
k1 ⇠ 0

k2 = 𝜙(k1, k7)
j2 = 𝜙(j1, j7)
if (k2 < 100)

if (j2 < 20) return j2

j5 ⇠ i1
k5 ⇠ k2+1

j6 ⇠ k2
k6 ⇠ k2+2

j7 ⇠ 𝜙(j5, j6)
k7 ⇠ 𝜙(k5, k6)

CFG
using SSA

B1

B2

B3 B4

B5 B6

B7

Placement of Phi Functions

The minimal number and
placement of phi functions 
is more complex than in
this simple example
• Generation of minimal

SSA
• Use of dominance

frontiers to determine
the basic block defining
the current value of a
variable

• See [3] for details

T F

FT

Intermediate
code

Compiler Construction 13: IR and SSA 37

What’s next?

• The procedure abstraction

References

[1] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman and F. K. Zadeck (1991).
 Efficiently computing static single assignment form and the control dependence graph.
 ACM Transactions on Programming Languages and Systems. 13 (4): 451–490
[2] Andrew W. Appel (1998). SSA is Functional Programming.
 ACM SIGPLAN Not. 33, 4 (April 1998), 17-20
[3] Cooper, Keith D.; Harvey, Timothy J.; Kennedy, Ken (2001). A Simple, Fast Dominance
 Algorithm. Softw. Pract. Exper. 2001; 4:1–10

Intermediate
code

