
Compiler Construction
Lecture 12: Intermediate representations  

and three-address code 

Michael Engel



Compiler Construction 12: IRs and TAC 2

Overview
• Intro to Intermediate representations 
• Classification of IRs 
• Graphical IRs: from parse tree to AST 
• Linear IRs 

• Example: LLVM IR 
• Implementation 

• Three-address code 
• Stack machines 

• Hybrid approaches
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What is missing?

Lexical 
analysis

Semantic
analysis

Code 
generation

Code 
optimization

Source code

machine-level program

Syntax 
analysis

syntax tree

Semantic analysis: attributed syntax tree 

• Name analysis (check def. & scope of symbols) 

• Type analysis (check correct type of expressions) 

• Creation of symbol tables (map identifiers to their  
types and positions in the source code)

Intermediate
code
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Code generation
• A syntax tree is a representation of the syntactic structure of a 

given program 
• we want to execute the program, i.e. control and data flow 

• Different levels of abstraction required 
• representation for all of the knowledge the compiler derives 

about the program being compiled  
• Most passes in the compiler consume IR 

• the scanner is an exception  
• Most passes in the compiler produce IR 

• passes in the code generator can be exceptions  
• Many optimizations work for different processors 

• optimizations on IR level can be reused 
• IR serves as primary & definitive representation of the code [1]

Intermediate
code
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A compiler using an IR
Source code

IR generation 
• Transform syntax tree into  

intermediate representation 

IR optimization
• Perform generic (non target-specific) optimizations on IR level 
• Compilers support many different optimizations, executed in sequence on the IR

Intermediate
code

Lexical 
analysis

Syntax 
analysis

Semantic 
analysis

IR
generation

IR
optimization

machine-level program

Code 
generation

syntax tree IR

IR
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Types of IR
• Graphical IRs encode the compiler’s knowledge in a graph 

• algorithms are expressed in terms of graphical objects: 
nodes, edges, lists, or trees 

• Our parse trees are a graphical IR 
• Linear IRs resemble pseudo-code for an abstract machine  

• algorithms iterate over simple, linear operation 
sequences 

• Hybrid IRs combine elements of graphical and linear IRs 
• attempt to capture their strengths and avoid their 

weaknesses  
• low-level linear IR used to represent blocks of straight-

line code and a graph to represent the flow of control 

Intermediate
code
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Graphical IRs: syntax tree → AST
• So far, we have just talked about syntax trees 

• To be precise, the syntax tree is simply the parse tree 
generated by the parser 

• The abstract syntax tree (AST) is an optimized form 
• Uses less memory, faster to process

Intermediate
code

Term

ident(a)

ident(b)

number(2)

+

Expr

Start

Expr

 1 Start → Expr 
 2 Expr  → Expr + Term 
 3        | Expr - Term 
 4        | Term 
 5 Term  → Term × Factor 
 6        | Term ÷ Factor 
 7        | Factor 
 8 Factor→ "(" Expr ")"       
 9        | number 
10        | ident

Parse tree for  
a×2+a×2×b 

Factor×Term

Factor×Term

Factor

Term

Factor×Term

number(2)

ident(a)

Factor
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Graphical IRs: syntax tree → AST
• The abstract syntax tree (AST) … 

• retains the essential structure of the parse tree  
• but eliminates the extraneous (nonterminal symbol) nodes  

• Precedence and meaning of the expression remain 

Intermediate
code

Term

ident(a)

ident(b)

number(2)

+

Expr

Start

Expr

Parse tree for  
a×2+a×2×b 

Factor×Term

Factor×Term

Factor

Term

Factor×Term

number(2)

ident(a)

Factor

+

× ×

AST for  
a×2+a×2×b 

a 2 b×

a 2



Compiler Construction 12: IRs and TAC 9

From source to machine code level

• ASTs are a near-source-level representation 
• Because of its rough correspondence to a parse tree, the 

parser can built an AST directly 
• Trees provide a natural representation for the grammatical 

structure of the source code discovered by parsing 
• their rigid structure makes them less useful for representing 

other properties of programs  
• Idea: model these aspects of program behavior differently 

• Different types of IR used in one compiler for different tasks 
• Compilers often use more general graphs as IRs  

• Control-flow graphs 
• Dependence graphs

Intermediate
code
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Directed acyclic graphs (DAGs)

• DAGs can represent code duplications in the tree 
• DAG = contraction of the AST that avoids duplications 
• DAG nodes can have multiple parents, identical subtrees are reused 
• sharing makes a DAG more compact than its corresponding AST 

• Example: a×2+a×2×b  
• Here, the expression "a×2" occurs twice 
• DAG can share a single copy of the 

subtree for this expression 
• The DAG encodes an explicit hint for  

evaluating the expression: 
• If the value of a cannot change between  

the two uses of a, then the compiler  
should generate code to evaluate a×2  
once and use the result twice

Intermediate
code

+

×

DAG for  
a×2+a×2×b 

b×

a 2

+

× ×

AST for  
a×2+a×2×b 

a 2 b×

a 2
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The level of abstraction
• Still, the AST here is close to the source code 

• Compilers need additional details, e.g. for tree-
based optimization and code generation 

• Source-level tree lacks much of the detail needed 
to translate statements into assembly code 

Intermediate
code

←

-

Source-level 
AST for  

w ← a-2×b 

w

b

×a

2
←

-+

×num 
4

+

val 
rarp

◆

◆

◆ num 
2

Low-level 
AST for  

w ← a-2×b 

-16rarp

+

label 
@G

num 
12

Low-level ASTs add this information: 

• val node: value already in a register  
• num node: known constant  
• lab node: assembly-level label 

• typically a relocatable symbol  
• ◆: operator that dereferences a value  

• treats value as a memory address 
and returns the contents of memory 
at that address (in C: "*" operator)
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Control-flow graphs

• Simplest unit of control flow in a program is a basic block (BB) 
• maximal length sequence of straightline (branch-free) code  
• sequence of operations that always execute together  

• unless an operation raises an exception  
• control always enters a basic block at its first operation and 

exits at its last operation  
• A control-flow graph (CFG) models the flow of control between 

the basic blocks in a program  
• A CFG is a directed graph, G = (N, E)  

• each node n ∈ N corresponds to a basic block  
• each edge e = (ni , nj) ∈ E corresponds to a possible transfer 

of control from block ni to block nj 

Intermediate
code
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CFG example

• CFG provides a graphical representation of the possible runtime 
control-flow paths  
• The CFG differs from syntax-oriented IRs, such as an AST,  

in which the edges show grammatical structure 

Intermediate
code

while (i < 100) { 
    stmt1; 
} 
stmt2;

while (i < 100)

stmt1

stmt2

CFG for a while loop:

The AST for this loop 
would be acyclic!

CFG for if-then-else: if (x == y) { 
    stmt1; 
} else { 
    stmt2; 
}  
stmt3;

if (x == y)

stmt1 stmt2

stmt3 Control always flows 
from stmt1 and stmt2 

to stmt3
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Use of CFGs

• Compilers typically use a CFG in conjunction with another IR  
• The CFG represents the relationships among blocks 
• operations inside a block are represented with another IR, such 

as an expression-level AST, a DAG, or one of the linear IRs.  
• The resulting combination is a hybrid IR  

• Many parts of the compiler rely on a CFG, either explicitly or implicitly  
• optimization generally begins with control-flow analysis and 

CFG construction  
• Instruction scheduling needs a CFG to understand how the 

scheduled code for individual blocks flows together  
• Global register allocation relies on a CFG to understand how 

often each operation might execute and where to insert loads 
and stores for spilled values 

Intermediate
code
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Graphs: dependence graph

• Compilers also use graphs to encode the flow of values  
• from the point where a value is created, a definition (def)  
• …to any point where it is used, a use  

• Data-dependence graph embody this relationship  
• Nodes represent operations  

• Most operations contain both definitions and uses  
• Edges connect two nodes 

• one that defines a value and another that uses it  
• Dependence graphs are drawn with edges that run from definition 

to use

Intermediate
code
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• To capture the data flow, the dependence graph extracts data-flow 
information from an IR representation (here: a linear low-level IR 
form of a tree)

Intermediate
code

 1 load rarp, @a  => ra 
 2 load 2        => r2 
 3 load rarp, @b  => rb 
 4 load rarp, @c  => rc 
 5 load rarp, @d  => rd 
 6 mult ra, r2    => ra 
 7 mult ra, rb    => ra 
 8 mult ra, rc    => ra 
 9 mult ra, rd    => ra 
10 store ra       => rarp, @a

2

rarp

1

36

4

5

7

Dependence graph example

Linear IR code for a←a×2×b×c×d

8

9

10

Linear IR  
line numbers
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• References to a[i] are shown deriving their values from a node 
representing prior definitions of a  

• This connects all uses of a together through a single node 
• Without sophisticated analysis of the subscript expressions, the 

compiler cannot differentiate between references to individual array 
elements

Intermediate
code

 1 x = 0; 
 2 i = 1; 
 3 while (i < 100) { 
 4   if (a[i] > 0)  
 5     x = x + a[i]; 
 6   i = i + 1; 
   } 
 7 print(x);

2 a

13

6

4

5

7

Interaction: CF and Dependence Graph 
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Linear IRs

An alternative to graphs 
• A sequence of instructions that execute in their order of appearance  

• linear IRs used in compilers resemble the assembly code for 
an abstract machine  

• Linear IRs must include a mechanism to encode transfers of 
control among points in the program 

• control flow in a linear IR usually models the implementation 
of control flow on the target machine.  

• linear codes usually include conditional branches and jumps 
• control flow demarcates the basic blocks in a linear IR 
• blocks end at branches, at jumps, or just before labelled 

operations

Intermediate
code
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Types of linear IRs

• One-address codes model the behavior of accumulator machines 
and stack machines 

• These codes expose the machine’s use of implicit names so 
that the compiler can tailor the code for it 

• The resulting code is quite compact  
• Two-address codes model a machine with destructive operations 

• These codes fell into disuse as memory constraints became 
less important; three-address code can model destructive 
operations explicitly  

• Three-address codes model a machine where most operations 
take two operands and produce a result 

• The rise of RISC architectures in the 1980s/1990s made these 
codes popular, since TAC resembles a simple RISC machine

Intermediate
code
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Linear IRs: stack machines

• Stack-machine code offers a compact and storage-efficient 
representation [3] 

• one form of one-address code 
• assumes the presence of a stack of operands  

• Most operations take their operands from the stack and push their 
results back onto the stack  

• e.g., an integer subtract operation would remove the top two  
elements from the stack and push their difference onto the stack  

• Stack discipline creates a need for  
some new operations  

• swap operation interchanges top  
two elements of the stack 

• Lilith was a stack machine designed  
at ETHZ for running Modula-2 code [2]

Intermediate
code
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Example: stack machine code

• Operations remove their operands from stack and push the result 
• Here, the stack grows from the top towards the bottom

Intermediate
code

push   2 
push   b 
multiply 
push   a 
subtract

Stack machine  
code for  
a - 2 × b

push   2 
push   b 
multiply 
push   a 
subtract

Stack

2

?

push   2 
push   b 
multiply 
push   a 
subtract

Stack

b

2

push   2 
push   b 
multiply 
push   a 
subtract

Stack

2 * b

?

push   2 
push   b 
multiply 
push   a 
subtract

Stack

a

2 * b

push   2 
push   b 
multiply 
push   a 
subtract

Stack

a-2*b

?

Execution sequence and related stack state: 
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Example: Java Bytecode

• A compact representation of stack-machine code [3] 
• usually represented in binary form

Intermediate
code

public static void main(String[] args) { 

    int a = 1; 

    int b = 2; 

    int c = a + b; 

}

public static void main(java.lang.String[]); 
descriptor: ([Ljava/lang/String;)V 
flags: (0x0009) ACC_PUBLIC, ACC_STATIC 

Code: stack=2, locals=4, args_size=1 

0: iconst_1 
1: istore_1 
2: iconst_2 
3: istore_2 
4: iload_1 
5: iload_2 
6: iadd 
7: istore_3 
8: return

You can disassemble 
Java bytecode using 
javap -v Test.class
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Three-address code (TAC)

• Most operations in TAC have the form i = j op k  
• one operator (op), two operands (j and k) and one result (i)  
• some operators will need fewer arguments 

• e.g. immediate loas and jumps 
• sometimes, an op with more than three addresses is needed  

• Three-address code is reasonably compact 
• most ops consist of four items: an operation and three names 
• both the operation and the names are drawn from limited sets 
• operations typically require 1 or 2 bytes 
• names are typically represented by integers or table indices 

• in either case, 4 bytes is usually enough

Intermediate
code



Compiler Construction 12: IRs and TAC 24

TAC example

• TAC resembles a RISC-like register machine 
• Operands have to be loaded into registers 
• Operations (other than load/store) operate on register values 
• Results are delivered in registers 

• Limited constraints for naming/allocating registers compared to real 
machines

Intermediate
code

t1 ← 2 
t2 ← b 
t3 ← t1 × t2 
t4 ← a 
t5 ← t4 - t3

TAC code for a - 2 × b

MOV  R1, #2      // R1=2 
LDR  R2, =b  
LDR  R2, [R2]    // R2=b 
MULU R3, R0, R2  // R3=2*b 
LDR  R4, =a  
LDR  R4, [R4]    // R4=a 
SUB  R5, R4, R3  // R5=R4-R3=a-2*b

ARM assembler code for a - 2 × b
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Example: LLVM IR

LLVM IR ("bitcode") is a typed TAC [5]

Intermediate
code

define i32 @foo(i32, i32) #0 { 
  %3 = alloca i32, align 4 
  %4 = alloca i32, align 4 
  store i32 %0, i32* %3, align 4 
  store i32 %1, i32* %4, align 4 
  %5 = load i32, i32* %3, align 4 
  %6 = load i32, i32* %4, align 4 
  %7 = mul nsw i32 2, %6 
  %8 = sub nsw i32 %5, %7 
  ret i32 %8 
}

LLVM IR code for 

int foo(int a, int b) { 
  return a - 2 * b; 
}

Generated with 
clang -S -emit-llvm foo.c

%3 = alloca i32, align 4 
%4 = alloca i32, align 4

store i32 %0, i32* %3, align 4 
store i32 %1, i32* %4, align 4

define i32 @foo(i32, i32) #0 function "foo" gets two int32 params 
(%0, %1) and returns an int32

reserve 2 * 4 bytes memory 
for temp variables, pointers 
returned in %3, %4

copy %0 → mem @ %3 
and %1 → mem @ %4

%5 = load i32, i32* %3, align 4 
%6 = load i32, i32* %4, align 4

mem @ %3 → %5 
mem @ %4 → %6

%7 = mul nsw i32 2, %6 %7 = 2 * %6

%8 = sub nsw i32 %5, %7 %8 = %5 (=%0) - %7

ret i32 %8 return %8 to caller
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What’s next?

• More on intermediate representations 
• Efficient implementation 
• Static single assignment (SSA) form 
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