® .
NTNU | sencEand recmology

LeCture(21o-mpller Construction
1: Type systems and attribute gramma
rs

Michael Engel

Includes material by Cooper & Torczon which is
2010, Keith D. Cooper & Linda Torczon,

Copyright .
all rights reserved. Used with permission.

Overview

* Type systems
* Type checking

« Syntax-directed translation
» Attribute grammars

N ian Uni i f . . .
@ NTINU | S Tecimoioss Compiler Construction 11: Types & attribute grammars

2

Types and type systems | analysis

« Type systems can specify program behavior at a more
precise level than is possible in a context-free grammar

« Type systems create a second vocabulary for describing
both the form and behavior of valid programs

* Type systems yield information that cannot be obtained
using the techniques of scanning and parsing

* Three distinct purposes:
« safety
* expressiveness
* runtime efficiency

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 3

Type safety é + =2 |anayais

« Ensure that the results/parts of assignments and expressions are
compatible with each other

* Providing types for data objects and rules for type inference
help the compiler with this

« (Bad?) alternatives:
* untyped (assembly, BCPL) and weakly typed languages
 there are ideas for a typed assembly language [1]

« Compiler performs type checking

« compiler must analyze the program and assign a type to each
name and each expression

It must check these types to ensure that they are used in
contexts where they are legal

« unfortunate misnomer, it lumps together the separate activities
of type inference and identifying type-related errors

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 4

| Semantic
& analysis

Drawbacks of type safety

« Wirth's Pascal programming language has a (quite) strict
type system [2]
* The size of an array is part of its type
« If one declares
var arrl0 : array [1..10] of integer;

arr20 : array [1..20] of integer;

* then arrl0 and arr20 are arrays of 10 and 20 integers
respectively

* Suppose we want to write a procedure 'sort' to sort an
iInteger array

* Because arrl0 and arr20 have different types, it is

not possible to write a single procedure that will sort
them both!

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 5

| Semantic
& analysis

Drawbacks of type safety (2)

« Even worse, strings in Pascal are arrays of char

« Consider writing a function index(s,c) that will return the
position in the string s where the character c first occurs, or
zero if it does not

* The problem is how to handle the string argument of index

* The calls index('hello',c) and index('goodbye',c)
cannot both be legal, since the strings have different lengths

* |dea: use
var temp : array [1..10] of char;
temp := 'hello’;
n := index(temp,c);
* but the assignment to 'temp' is illegal because 'hello’' and 'temp'
are of different lengths!

© N'TINU | Sonwegian University of Compiler Construction 11: Types & attribute grammars 6

nce and Technology

| Semantic
& analysis

Drawbacks of safety (3)

* Practical (?!?) solutions:
« define family of routines with a member for each possible string size!

» or define all strings (including constant strings like 'define') to have the
same length — used in practice!

type string = array [1..MAXSTR] of char;

« This wastes a lot of memory (especially on the small machines
Pascal was developed on)

« Wirth himself uses this in his compilers, e.g. in Pascal-S [3]:

word[beginsym]:=(?begin :); word[endsym]:= 'end "
word[ifsym]:= 'if '; word[thensym]:= 'then '
word[elsesym]:= 'else '; word[whilesym]:= ‘while '
word[dosym]:= 'do '; word[casesym]:= 'case '
word[repeatsym]:= 'repeat '; word[untilsym]:= 'until '
word[forsym]:= 'for '; word[tosym]:= "to '
word[downtosym]:= 'downto '; word[notsym]:= 'not 'y

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 7

Expressiveness

| Semantic
i analysis

» Types allow to specify behavior more precisely than is
possible with context-free rules

 Example: operator overloading
* gives context-dependent meanings to an operator

« example: operator "+" for int, float, double, string, ...

int x = 1, double x = 1.2, string x = "Hello";
y = 2, z; y = 2.3, z; string y = "World";

Z =X +Y; Z =X +Y; Z =X +Y;

// z =3 // z = 3.5 // z = "HellolWorld"

{ That doesn’t work in C,

* An untyped language might have to provide of COUrse...
lexically different operators for each case

 e.g. BCPL: "+" for ints, "#+" for f1loats

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 8

Generating Better Code

| Semantic
& analysis

» Defining types provides detailed information about every
expression in the program

 Example:
« runtime type analysis and conversion for untyped languages
 static generation of correct assembly statements

« Runtime type checking requires a runtime representation for type
* each variable has a value field and a tag field => overhead!

* Knowing types at compile time allows generation of efficient code

Type of (Pseudo)
a b atb assembler code
int int int add ra, ro => ra+«p
: i2f fa => ra
int float — float ¢ 4d Fa_f, Mo => la_f+b

i2d fa => ra_d

int double double dadd ra g, fo => I tog

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 9

Generating Better Code Semante

analysis

If types are known at runtime only, the compiler has to insert
runtime type conversions into the generated code

// partial code for "a+b => c¢" else if (tag(a) = real) then
if (tag(a) = integer) then if (tag(b) = integer) then
if (tag(b) = integer) then temp = ConvertToReal(b);
value(e) = value(a) + value(b); value(c) = value(a) + temp;
tag(c) = integer; tag(c) = real;
else if (tag(b) = real) then else if (tag(b) = real) then
temp = ConvertToReal(a); value(c) = value(a) + value(b);
value(c) = temp + value(b); tag(c) = real;
tag(c) = real; else if (tag(b) = ..) then
else if (tag(b) = ..) then // handle all other types..
// handle all other types... else
else signal runtime type fault
signal runtime type fault else if (tag(a) = ..) then
// handle all other types...
else

signal illegal tag value;

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 10

Components of a type system

| Semantic
& analysis

Base types: directly supported by most processors

 Numbers: limited-range integers (e.g., -2-31...231-1)
approximate real-numbers (floating point)

« Often, underlying hardware implementation influences
availability of number types (e.g. "int" in C)

» Characters: traditionally, support for 7 or 8 bit ASCII characters
more recently, UTF16 (Windows), UTF8 (common)

* Booleans: values TRUE and FALSE + logic operators (and, xor, ...)
Other possible base types (examples)

« Lisp provides a recursive basic type for lists (=> Lisp machines)
« Complex numbers (DSP compilers) or vectors of numbers

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 11

| Semantic
& analysis

Compound and constructed types

Combinations of elements of the base type

« Arrays: groups together multiple elements of the same type
(base or compound), e.g. array with 10 integers int a[10]

* many languages support multi-dimensional arrays: int a[10]
« Sitrings: some languages treat strings as compound types

* most common: character strings, sometimes bit strings
« Atrue string differs from an array type in several important ways

e can have operations like concatenation, translation, and
computing the length

« can be compared, e.g. in lexicographic order: "bar" < "foo"

 Enumerated types: giving (successive) numbers to named
elements, e.g. weekdays, months or colors
enum weekday {Mon, Tue, Wed, Thu, Fri, Sat, Sun} // Mon < Wed

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 12

| Semantic
& analysis

Compound and constructed types

« Structures (records). group together multiple objects of arbitrary type

+ elements (members) of the structure are typically given explicit names,
e.g. in structures for a parse tree for a compiler:

struct Nodel { struct Node2 {
struct Nodel *left; struct Node2 *left;
unsigned Operator; struct Node2 *right;
int Value unsigned Operator;
1 int Value
}

« The type of a structure is the ordered product of the types of the individual
elements that it contains

« Type of a Nodel: (Nodel *) x unsigned x int
« Type of a Node2: (Node2 *) x (Node2 *) x unsigned X int

 These new types should have the same essential properties that a base
type has

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 13

| Semantic
& analysis

Compound and constructed types

« Pointers: abstract memory addresses that let the programmer
manipulate arbitrary data structures

* save an address and later examine the object that it addresses
« often created when objects are created (new or malloc)
« Some languages provide an operator that returns the address of
an object (& operator in C)
« Some languages restrict pointer assignment to “equivalent” types
* protect from using a pointer to type t to reference a type s
« Some languages allow direct manipulation of pointers

« arithmetic on pointers, including autoincrement and autodecrement,
allow the program to construct new pointers

« Useful, but dangerous (especially with unexperienced programmers)
« arbitrary pointers make reasoning about programs harder

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 14

| Semantic
& analysis

Type equivalence

When does a language allow assignments/operations between
different types? Two general approaches exist:

* name equivalence: two types are typedef int length;

equivalent if and only if they have the typedef int height;
same name length 1;
height h = 42;

e programmer can select any name for a type 1 = h: // not allowed

 if the programmer chooses different names,
the language and its implementation should honor that deliberate act

« Structural equivalence asserts that two
types are equivalent if and only if they ~ stret i y
have the same structure } pixel; ’

- two objects are interchangeable if they struct {

: : - int temp; int humidity;
consist of the same set of fields, in the | w:gthe:'f'P int humidity
same order, and those fields all have weather = pixel; // OK

equivalent types

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 15

Inference rules | Smalysis

Inference rules specify, for each operator, the mapping between
the operand types and the result type

 For some cases, the mapping is simple:

* e.g., an assignment has one operand and one result:
result (LHS) must have type compatible with RHS

« Often, relationship between operand types and result types is
specified as recursive function on the type of the expression tree

« the result type of an operation is a function of the types of its
operands, e.g. specified using a table

« compilers often recognize certain +

_ _ _ int float double
combinations of mixed-type int int float double
expressions and automatically float float float double
iInsert appropriate conversions double double double double

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 16

Attribute grammars | Smalysis

« Context-free grammar augmented with a set of rules

« Each symbol in the derivation (or parse tree) has a set of
named values, or attributes

* The rules specify how to compute a value for each attribute
 Attribution rules are functional; they uniquely define the value

Example grammar:

This grammar describes signed

7Number — Sign List binary numbers

Sign — +
| -
List = List Bit 1 : G
| Bit We will augment it with rules that
Bit — 0 compute the decimal value of each
| 1 valid input string

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 17

' Semantic

Examples

analysis
For"-1" For "-101™
'~ Number — Sign List ‘ Number — 5ign List
| — Sign Bit ﬁ — Sign Bit
| —~ Sign 1 | - Sign List 1
- -1 — Sign List Bit 1 , _
. . L
— Sign Bit 0 1
= 5ign101 - C List)CBit)
- -101 \ l

Bit 0

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 18

Building attribute grammars onalysis

Add rules to compute the decimal value of a signed binary number

Production Attribution rules Symbol Attributes
Number — Sign List List.pos <0 Number val
if Sign.neg <
then Number.val < - List.val tgn neg
else Number.val — List.val List pos, val
S'Lgn - + Sign.neg «— false Bit pos, val

| - Sign.neg « true

Listy — |ist; Bit Listi.pos < Listo.pos + 1
Bit.pos <« Listo.pos
Listi.val < Lists.val + Bit.val

| Bit Bit.pos < List.pos
List.val < Bit.val
Bit — 0 Bit.val — 0
| 1 Bit.val « 2Bit.pos

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 19

Attribute grammar for example 1 |70

For "-1"

Number.val

— - [ist.val = - 1 |

neg ¢« true List.pos «< 0
List.val
< Bit.val = - 1|
Bit.pos «< 0
Bit.val

O~ W N

One possible evaluation order:|

List.pos
Sign.neg
Bit.pos
Bit.val
List.val
Number.val

Other orders are possible

— 2Bit.pos =]

1

Knuth suggested a data-flow model for evaluation [4]:
» Independent attributes first
» Others in order as input values become available

Norwegian University of . .
B NTNU ‘ Sciencégand Technolggy Compiler Construction 11

Evaluation order must be
consistent with the
attribute dependence graph

: Types & attribute grammars 20

| Semantic
i analysis

Attribute grammar for example 2

' For --‘_101--: | *Thié is the complete
val:-5 attrlbute dependence
' graph for "-101"

| | It shows the flow of all
| | attribute values in the
example

| Some flow downward
— inherited attributes

Some flow upward
— synthesized attributes

pos:2 . A rule may use attributes in
'the parent, children, or
| siblings of a node

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 21

Applying the rules analysis

» Attributes associated with nodes in parse tree

* Rules are value assignments associated with productions

 Attribute is defined once, using local information

« Label identical terms in production for uniqueness

* Rules & parse tree define an attribute dependence graph
« Graph must be non-circular

This produces a high-level, functional specification

. . The attribute dependence
SynthGSlzed attribute gra?)li1 is a specification for
. th tation,
« Depends on values from children ot an ahgorithm

Inherited attribute
* Depends on values from siblings & parent

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 22

Using attribute grammars Somants

Attribute grammars can specify context-sensitive actions
« Take values from syntax

* Perform computations with values

* Insert tests, logic, ...

Synthesized attributes | lnhefited attributes N
! |
'« Use values from children & constants | | » Use values from parent, constants &

« S-attributed grammars siblings

« Evaluate in a single bottom-up pass Directly express context

» Can rewrite to avoid them
'Good match to LR parsing Thought to be more natural
We want to use both kinds Not easily done at parse time
of attributes I

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 23

| Semantic
E analysis

Evaluation methods

Dynamic, dependence-based methods

* Build the parse tree

 Build the dependence graph

 Topological sort the dependence graph

 Define attributes in topological order

Rule-based methods (treewalk)
* Analyze rules at compiler-generation time

« Determine a fixed (static) ordering

» Evaluate nodes in that order

Oblivious methods (passes, dataflow)
* Ignore rules & parse tree

 Pick a convenient order (at design time) & use it

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 24

| Semantic
E analysis

Back to the example

For "-101" | Syntax tree

| |

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 25

Back to the example

For "-101":
| val:-5

| Semantic
i analysis

Attributed syntax tree

pos:1 pos:0
Bit
val: 4 ' val:1
1
val: 4 pos:1
l val:0
. pos:2
Bit
‘III' val:4 0
1
@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 26

| Semantic
i analysis

Back to the example

*‘ For "-101": | Inherited attributes
| val:-5

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 27

Back to the example

For "-101":
| val:-5

pos:0
val:5
) pos:1 . pos:0 .
Bit :
val:4 xal:lx
1

| Semantic
i analysis

Synthesized attributes

val obtains values
from children
and the same node

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 28

| Semantic
i analysis

Back to the example

For "-101" | More synthesized
val:-5 attributes

@ NTNU \ ?32%”?5 deUTnézﬁﬁsﬁggO; Compiler Construction 11: Types & attribute grammars 29

| Semantic
E analysis

Back to the example

o i

For "-101™

| Let’s show the
val: -5 computation...

and remove the
pos:0 | syntax tree

. ; o 0,.’.::.‘
p0s:0 .
val:1 A
. . o.’
”"“ 1
., 4
val: 4L .
A .\ pos:1—-
: B'Lt ’:
val:0 a
H v ’
. pos:2 .
Bit : :
val:4 & 0
o.’
1 -

@ N'TNU | Sy o Compiler Construction 11: Types & attribute grammars 30

Science and Technology

remantic

BaCk tO the example analysis
For "-101" ~ All that is left is the
| val:-5 attribute dependence
| graph
pos:0 This succinctly represents
neg: true val : 5 | |the flow of values in the
Y RN | | problem instance
- bos: 1, p';;‘_ 0 The dynamic methods sort
alih al:1 A this graph to find |
A AN R 'independent values, then
pos:2 or s work along graph edges
"4 |
val:4 pos:1. The rule-based methods try
v val:0 o to discover “good” orders
POS:2 . Y by analyzing the rules
val:b a0 'The oblivious methods
. T - - | ignore the structure of this
: The dependence grap
must be acyclic! graph
e

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 31

| Semantic
& analysis

Circularity

* We can only evaluate acyclic instances
» General circularity testing problem is inherently exponential!

* We can prove that some grammars can only generate instances
with acyclic dependence graphs

 Largest such class is “strongly non-circular” grammars (SNC)
[9]

« SNC grammars can be tested in polynomial time

* Failing the SNC test is not conclusive

» Many evaluation methods discover circularity dynamically
= Bad property for a compiler to have

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 32

A circular attribute grammar

| Semantic
i analysis

Production Attribution rules

Number — Sign List Lista <0

listo — List; Bit Listi.a < Liste.a +1
Listo.b — Lists.b
Listi.c < List4.b + Bit.val

| Bit Listo.b — Listo.a + Listo.c + Bit.val
Bit - 0 Bit.val — 0
| 1 Bit.val — 1

The circularity is in the attribution rules,
not the underlying CFG

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 33

Circular grammar example

For "-101™

v

@ NTNU | sanetandrecnoiogy

| Semantic
i analysis

7
 Production Attribution rules
Number — Sign List
/ Listg — List; Bit Lists.a « Listo.a +1
Listo.b < Listi.b
Listi.c — Listi.b +
Bit.val
| Bit Listo.b — Listo.a +
Listo.c + Bit.val
Bit - 0 Bit.val — 0
val | 1 Bit.val — 1
Compiler Construction 11: Types & attribute grammars 34

Circular grammar example | Smalysis

- i
| Production Attribution rules
For "-101"; |

| Number — Sign List Lista <0
| Number
| | Listo — List; Bit' Listi.a < Listo.a + 1 ’
| . ISTo.D <« LIST1.
b

Listi.c < Listi.b +

Bit.val
| Bit Listo.b « Listo.a +
Listo.c + Bit.val
Bit - 0 Bit.val — 0
| 1 Bit.val — 1

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 35

Circular grammar example

For "-101™

b:
l C: Bit

val:

|

@ NTNU | sanetandrecnoiogy

| Semantic
i analysis

Production Attribution rules

Number — Sign List Lista <0

Listo — [ist; Bit E44:3 5.2
Listo.b < Listi.b

1.c — List1.b
Bit.val
| Bit Listo.b — Listo.a +
Listo.c + Bit.val
Bit -0 Bit.val — 0
| 1 Bit.val — 1
Compiler Construction 11: Types & attribute grammars 36

| Semantic
E analysis

Circular grammar example

o 7
j‘ For "-101": |

Production Attribution rules

Number — Sign List Lista <0

Listg — List; Bit Lists.a « Listo.a +1
Listo.b < Listi.b
Listi.c < Listi.b +

Bit.val
| Bit Listo.o — Listo.a +
Listo.c + Bit.val
Bit -0 Bit.val — 0
| 1 Bit.val — 1

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 37

Circular grammar example

For "-101™

1 Here is the
circle!

Production

|

Number — Sign List

Listy

| Bit

Bit

—
P o

Norwegian University of
Science and Technology

@ NTNU

— [ist; Bit

| Semantic
i analysis

Attribution rules

Lista — 0

Listi.a < Listo.a + 1

Listo.b < Listi.b

Listi.c < Listi.b +
Bit.val

Listo.b < Listo.a +

Listo.c + Bit.val
Bit.val — 0
Bit.val — 1

Compiler Construction 11: Types & attribute grammars 38

Circular grammar example | Smalysis

For "-101";

|

@ NTNU

Norwegian University of
Science and Technology

Production Attribution rules

Number — Sign List Lista <0

Listo — List; Bit Lists isto.a + 1
‘J-.i. s lstub.
: Listi.c < List1.b +
i Bit.val

| Bit :5 Listob < Listo.a+
: Listo.c + Bit.val:

Bit - 0 Bit.valis- 0
| 1 Bit.vali<— 1

Here is the
circle!

Compiler Construction 11: Types & attribute grammars 39

Circles — the point onalyais

« Circular grammars have indeterminate values
« Algorithmic evaluators will fail
* Noncircular grammars evaluate to a unique set of values
« Circular grammar might give rise to noncircular instance
* Probably shouldn’t bet the compiler on it...
= Should (undoubtedly) use provably noncircular grammars

Remember, we are studying AGs to gain insight
* We should avoid circular, indeterminate computations

* If we stick to provably noncircular schemes, evaluation should be
easier

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 40

' Semantic

An extended attribute grammar ex. .

Grammar for a basic block

Bzoc/{() — Block: Assign | Let’s estimate cycle counts (again)
| | Assign
| Assign — Ident = Expr ;
Expro — Expri + Term 4
| Expri - Term
| Term
Termg — Term; * Factor
| Term; / Factor
| Factor
Factor — (Expr)
| Number
| Ident

e Each operation has a COST
* Add them, bottom up

* Assume a load per value

* Assume no reuse

Simple problem for an attribute
grammar

@ N'TNU | Sy o Compiler Construction 11: Types & attribute grammars 41

Science and Technology

remantic

A quick look at basic blocks

analysis
o= 1 | ; - L B1|
Code in a basic block PR *k = 0
* has one entry point (at its hile (k < 100) ¢ | B
start), so no code inside the ~ ["™5F ¢§ < 50y (| |uhile (k < 160)BP
block is the destination of a jo= i ' ’
. . . . k = k+1: - , _
jump instruction anywhere in L else { it (G < 20) (B3
the program i = k; -
. . k = k+2; JE——
 has one exit point, so only the } i=1; B4
last instruction can cause the ! curn | ko= ket
program to begin executing =~ L—— L
code in a different basic block Source code i = k; B5
. This implies: _ KTk
whenever the first instruction in a T 56
basic block is executed, the rest of =1
the instructions are necessarily Basic Blocks B1-B6
executed exactly once, in order The code may be source code,

assembly code or some other

: ions
N ian University of . sequence of instructio
E NTNU ‘ Scoig\gfégfr?d Tnel\c/ﬁgsglggoy COmpller Conslravaormrrer yposwrattuToute grarmrars 42

An extended example

| Semantic
i analysis

Grammar for a basic block

1 Blocko = Block; Assign Blockp.cost « Blocki.cost + Assign.cost |
2 | Assign Blockop.cost ¢ Assign.cost
|3 Assign — Ident = Expr ; Assign.cost + COST(store) + Expr.cost
| s Expro — Expri + Term Exprp.cost ¢+ Expri.cost
| + COST(add) + Term.cost
| s | Expri - Term Expro.cost ¢+ Expri.cost
+ COST(sub) + Term.cost
6 | Term Expro.cost ¢ Term.cost
7 Termp — Term; * Factor Termg.cost ¢ Term.cost
+ COST(mul) + Factor.cost
8 | Term: / Factor Termg.cost ¢ Expri.cost
+ COST(div) + Factor.cost
9 | Factor Termg.cost ¢ Factor.cost
10 Factor — (Expr) Factor.cost « Expr.cost
11 | Number Factor.cost ¢ COST(LoadImm)
12 | Ident Factor.cost < COST(Load)

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 43

An extended example (contd.) Somante

Properties of the example grammar
« All attributes are synthesized = so-called S-attributed grammar

* Rules can be evaluated bottom-up in a single pass
« Good fit to bottom-up, shift/reduce parser

 Easily understood solution

« Seems to fit the problem well

What about an improvement?

* Values are loaded only once per block (not at each use)
* Need to track which values have been already loaded

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars a4

| Semantic
i analysis

A better execution model

Load tracking adds complexity
» But, most of it is in the “copy rules”
» Every production needs rules to copy Before & After

ﬁactor = (Expr) Factor.cost ¢+ Expr.éost
Expr.before <« Factor.before
Factor.after « Expr.after

? | Number Factor.cost <+ COST(LoadImm)
Factor.after « Factor.before
| Ident If (Ident.name ¢ Factor.before)

then Factor.cost <+ COST(Load)
Factor.after « Factor.before
u {Ident.name}
else Factor.cost « 0
Factor.after « Factor.before

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 45

| Semantic
l analysis

A better execution model

Adding load tracking
» This needs sets Before and After for each production
« Must be initialized, updated, and passed around the tree

An example production:

Expro — Expri + Term EXpro + Expri.cost

+ COST(add) + Term.cost
:‘T Expri.before <+ Expro.before
] Term.before <+ Expri.before
Expri.after & Term.after

* These copy rules multiply rapidly
» Each creates an instance of the set
 Lots of work, lots of space, lots of rules to write

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 46

An even better model | Sralysis

What about accounting for finite register sets?
 Before & After must be of limited size

» Adds complexity to Factor — Identifier

* Requires more complex initialization

Jump from tracking loads to tracking registers is small

« Copy rules are already in place
« Some local code to perform the allocation

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 47

...and its extensions | Smalysis

Tracking loads

* Introduced Before and After sets to record loads

» Added = 2 copy rules per production

* Serialized evaluation into execution order

« Made the whole attribute grammar large & cumbersome

Finite register set

« Complicated one production (Factor — ldentifier)
* Needed a little fancier initialization

» Changes were quite limited

Why is one change hard and the other one easy?

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 48

| Semantic
& analysis

Summing it up

* Non-local computation needed lots of supporting rules
« Complex local computation was relatively easy

The problems
» Copy rules increase cognitive overhead
» Copy rules increase space requirements
* Need copies of attributes
« Can use pointers, for even more cognitive overhead
* Result is an attributed tree
* Must build the parse tree
* Either search tree for answers or copy them to the root
=» in practice, ad-hoc solutions are used (see previous lecture)

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 49

What’s next? | Smalysis

* Three-address code and intermediate representations

References

[1] Crary, K., et al. (1999)
TALX86: A realistic typed assembly language.
ACM SIGPLAN Workshop on Compiler Support for System Software Atlanta, GA, USA.
[2] Kernighan, Brian W. (1984)
Why Pascal is not my favorite programming language.
Computer Science Technical Report 100, Bell Laboratories, Murray Hill, NJ, USA, July 1981.
Available online at http://cm.bell-labs.com/cm/cs/cstr.
[3] Wirth, Niklaus (1981)
Pascal-S: A Subset and its Implementation.
In Pascal - The Language and its Implementation 1981: 199-259
[4] Knuth, D.E. (1990)
The genesis of attribute grammars.
In: Deransart P., Jourdan M. (eds) Attribute Grammars and their Applications.
Lecture Notes in Computer Science, vol 461. Springer, Berlin, Heidelberg
[5] Kennedy, K., Warren, S.K. (1976)
Automatic generation of efficient evaluators for attribute grammars.
In: Proceedings of the 3rd ACM SIGACT-SIGPLAN Symposium on Principles on Programming
Languages, POPL 1976, pp. 32—49. ACM, New York

@ NTNU | S oy Compiler Construction 11: Types & attribute grammars 50

