
Compiler Construction
Lecture 10: Context-sensitive analysis

Michael Engel

Compiler Construction 10: Context-sensitive analysis 2

Overview
• Where are we standing now?
• There’s more to languages than context-free grammars can

describe…
• From syntax to semantics

• Syntax-directed translation
• Ad-hoc approach
• Examples
• A tiny (very imperfect) arithmetical expression to ARM

assembly compiler

Compiler Construction 10: Context-sensitive analysis 3

Where are we standing now?

Syntax analysis (parsing)
– Uses grammar of the source language
– Decides if input token sequence can be

derived from the grammar

id(x)

op(=)

id(y)

op(+)

number(42)

Lexical
analysis

Semantic
analysis

Code
generation

Code
optimization

Source code

token sequence

machine-level program

Syntax
analysis

syntax tree

Semantic
analysis

Compiler Construction 10: Context-sensitive analysis 4

What is missing?

Lexical
analysis

Semantic
analysis

Code
generation

Code
optimization

Source code

machine-level program

Syntax
analysis

syntax tree syntax tree

Semantic analysis

• Name analysis (check def. & scope of symbols)

• Type analysis (check correct type of expressions)

• Creation of symbol tables (map identifiers to their
types and positions in the source code)

Semantic
analysis

Compiler Construction 10: Context-sensitive analysis 5

Beyond syntax: Example

• Consider this C program
• Which errors can you detect?
• Which of these can be detected using a context-free grammar?

Semantic
analysis

bar(int a, int b, int c, int d) {
 …
}

foo() {
 int f[3],g[0], h, i, j, k;
 char *p;
 bar(h,i,“ab”,j, k);
 k = f * i + j;
 h = g[17];
 printf(“<%s,%s>.\n”,p,q);
 p = 10;
}

Wrong number of
arguments to bar()

Declared g[0],
used g[17]

"ab" is not an int

wrong dimension
when using f

undeclared
variable q 10 is not a

character string

Compiler Construction 10: Context-sensitive analysis 6

Beyond syntax

• All of these errors are “deeper than syntax”
• There is a level of correctness that is deeper than grammar
• To generate code, we need to understand its meaning!

• To generate code, the compiler needs to answer many questions, such as:
• Is “x” a scalar, an array, or a function? Is “x” declared?
• Are there names that are not declared? Declared but not used?
• Which declaration of “x” does a given use reference?
• Is the expression “x * y + z” type-consistent?
• In “a[i,j,k]”, does a have three dimensions?
• Where can “z” be stored? (register, local, global, heap, static)
• In “f = 15”, how should 15 be represented?
• How many arguments does “bar()” take? What about “printf()”?
• Does “*p” reference the result of a “malloc()”?
• Do “p” and “q” refer to the same memory location?
• Is “x” defined before it is used?

Semantic
analysis

All these are beyond the expressive

power of a context-free grammar!

Compiler Construction 10: Context-sensitive analysis 7

Context-sensitive analysis

These questions are part of context-sensitive analysis
• Answers depend on values, not parts of the language
• Questions & answers involve non-local information
• Answers may involve computation
How can we answer these questions?
• Use formal methods

• Context-sensitive grammars?
• Attribute grammars? (attributed grammars?)

• Use ad-hoc techniques
• Symbol tables
• Ad-hoc code (action routines)

Semantic
analysis

For parsing and scanning,
formal approaches won

In context-sensitive analysis, ad-hoc

techniques are often used in practice

Compiler Construction 10: Context-sensitive analysis 8

Non-syntactical information

Idea: Track the definitions of symbols in a global structure

Semantic
analysis

023 int x;

042 float y;

…

142 y = 2.0 * x + q;

Expr

Expr

* name(x)

name(q)+

Excerpt from simplified AST:

2.0

Assignment

name(y) =

This program (excerpt) is syntactically correct

Some non-syntactical questions a compiler
has to consider when parsing line 142:
• Are x, y and q defined in the current scope?
• Where are x, y and q stored in memory?
• Are the types of x, y and q compatible?

• If not, can they be made compatible?
(by implicit typecasts, e.g. int → float)

Declaration

Statement

type(int) name(x)

?
Is traversing the AST to
answer these questions

a good idea?

Compiler Construction 10: Context-sensitive analysis 9

Symbol tables

Which information is required to compile an instruction?

Semantic
analysis

023 int x;

…

099 x = x + 1;

Expr

name(x) + 1

Assignment

name(x) =

Line 99 might be translated to:

1. Read value from memory location of x
2. Add integer value 1 to this
3. Store value to memory location of x

It is convenient to store all this information
in a table and link the nodes of the AST
to this information

name type location …etc…
x int 2048 …
… … … …

Compiler Construction 10: Context-sensitive analysis 10

Implementing symbol tables

This linking requires finding the table entry of x every time that
name is used
• We only get the name (→ scanner), so this is a text search problem
• We potentially have thousands of names when compiling a program

Possible approaches:
• Direct indexing: keep table where the index is a function of the text
→ limits number of identifiers to size of symbol table

• Linked list: keep a dynamic list, go through it and compare
→ expensive searches for identifiers in the back of the list

• Hash table

Semantic
analysis

Compiler Construction 10: Context-sensitive analysis 11

Symbol tables as hash tables

• An unpredictable, fixed-length code (hash value) can be computed
from any length of identifier

• Elements stored in fixed-length array of linked lists
• Search and compare only in the list where hash value matches

Semantic
analysis

0

1

2

3

x

hash("x")
= 2

type location …etc…
int 2048 …

Compiler Construction 10: Context-sensitive analysis 12

Advantage of hash tables

Hash tables are a good compromise

• Can dynamically grow with number of stored elements
• Constant time to find the right list to search
• If the hashing function distributes elements evenly, search time is

divided by the number of lists
• Balance between static size limitation and list length can be

adjusted depending on the data stored

However…
• No implementation of hash tables directly available in C 😕

Semantic
analysis

Compiler Construction 10: Context-sensitive analysis 13

Ad-hoc syntax-directed translation

Build on bottom-up, shift-reduce parser
• Associate a snippet of code with each production
• At each reduction, the corresponding snippet runs
• Allowing arbitrary code provides complete flexibility

• Includes ability to do tasteless and bad things
To make this work
• Need names for attributes of each symbol on LHS & RHS
• Typically, one attribute passed through parser + arbitrary code

(structures, globals, statics, …)
• Yacc introduced $$, $1, $2, … $n, left to right
• Need an evaluation scheme
• Fits nicely into LR(1) parsing algorithm

Semantic
analysis

Similar ideas work for
top-down parsers

Compiler Construction 10: Context-sensitive analysis 14

Example: expression grammar Semantic
analysis

 1 Block → Block Assign
 2 | Assign
 3 Assign→ ident = Expr { cost = cost + COST(store); }
 4 Expr → Expr + Term { cost = cost + COST(add); }
 5 | Expr - Term { cost = cost + COST(sub); }
 6 | Term
 7 Term → Term × Factor { cost = cost + COST(mult); }
 8 | Term ÷ Factor { cost = cost + COST(div); }
 9 | Factor
10 Factor→ "(" Expr ")"
11 | number { cost = cost + COST(loadImm); }
12 | ident { i = hash(ident);
 if (table[i].loaded == false) {
 cost = cost + COST(load);
 table[i].loaded = true; }}

Introduce the cost of
expressions to grammar

Compiler Construction 10: Context-sensitive analysis 15

One thing was missing… Semantic
analysis

 0 Start → Init Block
.5 Init → 𝜺 { cost = 0; }
 1 Block → Block Assign
 2 | Assign
 3 Assign→ ident = Expr { cost = cost + COST(store); }
…

Initialize
variable "cost"

Before parser can reach Block, it must reduce Init
• Reduction by Init sets cost to zero

• We split the production to create a reduction in the middle
– for the sole purpose of hanging an action there
• This trick has many uses

Compiler Construction 10: Context-sensitive analysis 16

That wasn’t chicken yacc… Semantic
analysis

Start : Block { printf("Cost: %d\n", $$); }
Block : Block Assign { $$ = $1 + $2; }
 | Assign { $$ = $1; }
Assign: ident '=' Expr { $$ = cost(STORE) + $3; }
Expr : Expr '+' Term { $$ = $1 + cost(ADD) + $3; }
 | Expr '-' Term { $$ = $1 + cost(SUB) + $3; }
 | Term { $$ = $1; }
Term : Term '*' Factor { $$ = $1 + cost(MULT) + $3; }
 | Term '/' Factor { $$ = $1 + cost(DIV) + $3; }
 | Factor { $$ = $1; }
Factor: '(' Expr ')' { $$ = $2; }
 | number { $$ = cost(LOADIMM); }
 | ident { int i = hash(ident);
 if (table[i].loaded == 0) {
 $$ = $$ + cost(LOAD);
 table[i].loaded = 1;
 }
 else $$ = 0;
 }

Complete yacc+lex
code is online

Compiler Construction 10: Context-sensitive analysis 17

Use case example: timing, energy

• How long does a piece of code take to execute?
• How much energy will the code consume?

Semantic
analysis

Much more complex
to assess for modern

high-end CPUs
(due to superscalarity,
pipelines, caches, …)

Far more complex analyses required

due to loops and conditional branches

Compiler Construction 10: Context-sensitive analysis 18

Example: building an AST Semantic
analysis

 1 Start : Expr { $$ = $1; }
 2 Expr : Expr '+' Term { $$ = MakeAddNode($1, $3); }
 3 | Expr '-' Term { $$ = MakeSubNode($1, $3); }
 4 | Term { $$ = $1; }
 5 Term : Term '*' Factor { $$ = MakeMultNode($1, $3); }
 6 | Term '/' Factor { $$ = MakeDivNode($1, $3); }
 7 | Factor { $$ = $1; }
 8 Factor: '(' Expr ')' { $$ = $2; }
 9 | number { $$ = MakeNumberNode(token); }
10 | ident { $$ = MakeIdentNode(token); }

So far, our syntax tree was only implicit – we need to operate on it
• Assume constructors for each node
• Assume stack holds pointers to nodes
• Assume yacc-like syntax

Compiler Construction 10: Context-sensitive analysis 19

Example: emitting ARM assembly Semantic
analysis

Start : Expr { $$ = $1; }
Expr : Expr '+' Term { $$ = NxReg(); Emit("add", $$, $1, $3); }
 | Expr '-' Term { $$ = NxReg(); Emit("sub", $$, $1, $3); }
 | Term { $$ = $1; }
Term : Term '*' Factor { $$ = NxReg(); Emit("mul", $$, $1, $3); }
 | Term '/' Factor { $$ = NxReg(); Emit("div", $$, $1, $3); }
 | Factor { $$ = $1; }
Factor: '(' Expr ')' { $$ = $2; }
 | number { $$ = NxReg(); EmitLI("mov", $$, yylval); }
 | ident { $$ = NxReg(); EmitLD("ldr", $$, yytext); }

Early simple compilers derived machine code directly from AST
• We won’t do it this way later – need more optimization opportunities
• Still a nice example (if the CPU instructions fit this scheme)
• Assume that NxReg() returns a CPU register number We omit

symbol table
handling here…

Compiler Construction 10: Context-sensitive analysis 20

Example: emitting ARM assembly Semantic
analysis

int NxReg(void) {
 static int reg = 0;
 if (reg > 11) { reg = 0; return reg; } // wraparound if > 12 registers used!
 return reg++;
}

void EmitLD(char *op, int rd, char *adr) { // emit memory load from address "adr"
 printf("\tldr r%d, =%s\n", rd, adr);
 printf("\t%s r%d, [r%d]\n", op, rd, rd);
}

void EmitLI(char *op, int rd, int val) { // emit load of constant value "val"
 printf("\t%s r%d, #%d\n", op, rd, val);
}

void Emit(char *op, int rd, int rs1, int rs2) { // emit given arithmetic instrn.
 printf("\t%s r%d, r%d, r%d\n", op, rd, rs1, rs2);
}

Emit, EmitLI and EmitLD print assembler instructions
• NxReg should return free (unused) register number We will run out of

registers for complex
expressions!

Compiler Construction 10: Context-sensitive analysis 21

Example: compiler output Semantic
analysis

$ echo "(z-3)*x+5" | ./compile
 ldr r0, =z
 ldr r0, [r0] // r0 = z
 mov r1, #3 // r1 = 3
 sub r2, r0, r1 // r2 = z-3
 ldr r3, =x
 ldr r3, [r3] // r3 = x
 mul r4, r2, r3 // r4 = (z-3)*x
 mov r5, #5 // r5 = 5
 add r6, r4, r5 // r6 = (z-3)*x+5

Input: (z-3)*x+5 Input: (z-3)*x)+5

$ echo "(z-3)*x)+5" | ./compile
 ldr r0, =z
 ldr r0, [r0]
 mov r1, #3
 sub r2, r0, r1
 ldr r3, =x
 ldr r3, [r3]
 mul r4, r2, r3
syntax error:)

ARM instruction overview:
ldr rd, =z –––––––––––––––––––– load address of memory location z into reg. rd
ldr rd, [rs] ––––––––––––––––––– load contents of memory at addr. rs into rd
mov rd, #val ––––––––––––––––––– copy numerical value val into register rd
(add|sub|mul|div) rd, rs1, rs2 – execute rd = rs1 (+|-|*|/) rs2

Directly generating code
during parsing →

partial assembler code
is being emitted!

Compiler Construction 10: Context-sensitive analysis 22

Example: register wraparound Semantic
analysis

$ echo "(a+(b+(c+(d+e))))*x" | ./compile
 ldr r0, =a
 ldr r0, [r0] // r0 = a
 ldr r1, =b
 ldr r1, [r1] // r1 = b
 ldr r2, =c
 ldr r2, [r2] // r2 = c
 ldr r3, =d
 ldr r3, [r3] // r3 = d
 ldr r4, =e
 ldr r4, [r4] // r4 = e
 add r5, r3, r4 // r5 = d+e
 add r0, r2, r5 // r0 = (d+e)+c
 add r0, r1, r0
 add r1, r0, r0
 ldr r2, =x
 ldr r2, [r2]
 mul r3, r1, r2

Input: (a+(b+(c+(d+e))))*x

No more unused registers:
wraparound!

r0 is overwritten here
Value of "a" is lost
→ incorrect result!

A real compiler needs
a method for
register allocation

• assign values to free registers
• when running out of registers,

spill (save to memory)
register contents and restore
them when needed later

• efficient register allocation is
complex – as we will see later

Number of registers in
NxReg() reduced to 5 here
to make example shorter!

Compiler Construction 10: Context-sensitive analysis 23

What’s next?

• A quick look at attribute grammars
• Some insight into type systems and type analysis

References
[1] ARM Cortex-A57 Software Optimization Guide
http://infocenter.arm.com/help/topic/com.arm.doc.uan0015b/
Cortex_A57_Software_Optimization_Guide_external.pdf
[2] Kerstin Eder and John P. Gallagher, Energy-Aware Software Engineering,
 DOI: 10.5772/65985
https://www.intechopen.com/books/ict-energy-concepts-for-energy-efficiency-and-sustainability/energy-
aware-software-engineering
[3] Peter Marwedel, slide set on Embedded System Evaluation and Validation: WCET analysis (sl. 14 ff.)
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/staff/marwedel/es-book/slides11/es-
marw-5.1-evaluation.pdf
[4] ARM Instruction Set reference guide
https://static.docs.arm.com/100076/0100/
arm_instruction_set_reference_guide_100076_0100_00_en.pdf

Semantic
analysis

http://infocenter.arm.com/help/topic/com.arm.doc.uan0015b/Cortex_A57_Software_Optimization_Guide_external.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.uan0015b/Cortex_A57_Software_Optimization_Guide_external.pdf
https://www.intechopen.com/books/ict-energy-concepts-for-energy-efficiency-and-sustainability/energy-aware-software-engineering
https://www.intechopen.com/books/ict-energy-concepts-for-energy-efficiency-and-sustainability/energy-aware-software-engineering
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/staff/marwedel/es-book/slides11/es-marw-5.1-evaluation.pdf
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/staff/marwedel/es-book/slides11/es-marw-5.1-evaluation.pdf
https://static.docs.arm.com/100076/0100/arm_instruction_set_reference_guide_100076_0100_00_en.pdf
https://static.docs.arm.com/100076/0100/arm_instruction_set_reference_guide_100076_0100_00_en.pdf

