
Compiler Construction
Lecture 9: Practical parsing issues and yacc intro 

Michael Engel



Compiler Construction 09: Practical parsing, yacc 2

Overview
• Practical parsing issues 

• Error recovery 
• Unary operators 
• Handling context-sensitive ambiguity  
• Left versus right recursion  

• A quick yacc intro 
• Syntax of yacc grammar descriptions 
• yacc-lex interaction 
• Example



Compiler Construction 09: Practical parsing, yacc 3

Error recovery

• Syntax errors are common in program development 
• Our previous parsers have stopped parsing at the first error 

• Is this what a programmer would want? [2] 
• Prefer to find as many syntax errors as possible in each compilation  

• A mechanism for error recovery helps the parser to move on to a 
state where it can continue parsing when it encounters an error 
• Select one or more words that the parser can use to synchronize 

the input with its internal state  
• When the parser encounters an error, it discards input symbols 

until it finds a synchronizing word and then resets its internal state 
to one consistent with the synchronizing word 

Syntax
analysis
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Error recovery

• Consider a language using semicolons as statement separators 
• The semicolon can be used as synchronizing element: when an error 

occurs, the parser calls the scanner repeatedly until it finds a semicolon 

Syntax
analysis

foo = func)42 ;  
return foo ;

• Here, a recursive-descent parser can simply discard words until it finds 
a semicolon and return (fake) success [1] 

• This resynchronization is more complex in an LR(1) parser: 
• it discards input until it finds a semicolon… 
• scans back down the stack to find state with valid Goto[s, Stmt] entry 
• the first such state on represents the statement that contains the error 
• discards entries on the stack above that state, pushes the state  
Goto[s, Stmt] onto the stack and resumes normal parsing
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Unary operators

• Classic expression grammar includes binary operators only 
• Algebraic notation includes unary operators  

• e.g., unary minus and absolute value 
• Other unary operators:  

• autoincrement (i++) 
• autodecrement (i--) 
• address-of (&) 
• dereference (*) 
• boolean complement (!) 
• typecasts ( (int)x ) 

• Adding these to the expression grammar requires some care

Syntax
analysis
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Unary operators

Example: expression grammar with an absolute value operator ||x

Syntax
analysis

Start → Expr 
Expr  → Expr + Term 
       | Expr - Term 
       | Term 
Term  → Term × Value 
       | Term ÷ Value  
       | Value 
Value → "||" Factor 
       | Factor 
Factor→ "(" Expr ")" 
       | num 
       | name

Expr

<num,3>

Start

Expr Term

ValueTerm

FactorValue

<name,x>

Factor"||"

"-"

Parse tree for || x - 3
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Unary operators

Example: absolute value operator ||x 
• Absolute value should have higher precedence 

than either × or ÷  
• However, it needs lower precedence than Factor  

• this enforces evaluation of parenthetic expressions 
before application of ||  

• The example grammar is still LR(1) 
• but it does not allow to write || || x 

• Writing this doesn’t make much sense 
• but it’s a legal mathematical operation, so why not? 
• This would work: ||(|| x) 

• Problem for other operators like (dereferencing) * 
• **p is a common operation in C

Start → Expr 
Expr  → Expr + Term 
       | Expr - Term 
       | Term 
Term  → Term × Value 
       | Term ÷ Value  
       | Value 
Value → "||" Factor 
       | Factor 
Factor→ "(" Expr ")" 
       | num 
       | name

Expr

<num,3>

Start

Expr Term

ValueTerm

FactorValue

<name,x>

Factor"||"

"-"
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Unary operators

Problem for other operators like * 
• **p is a common operation in C 

• Solution: 
• add a dereference production for Value 

as well: Value → "*" Value  
• The resulting grammar is still LR(1) 

• even if we replace the "×" operator  
in Term → Term × Value with "*", 
overloading the operator "*" in the  
way that C does 

• The same approach works for unary minus

Start → Expr 
Expr  → Expr + Term 
       | Expr - Term 
       | Term 
Term  → Term "*" Value 
       | Term ÷ Value  
       | Value 
Value → "*" Value 
       | "||" Factor 
       | Factor 
Factor→ "(" Expr ")" 
       | num 
       | name
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Handling context-sensitive ambiguity 

• Using one word to represent two different meanings can create a 
syntactic ambiguity  
• Common in early programming languages (FORTRAN, PL/I, Ada) 

• Parentheses used to enclose both the subscript expressions of an 
array reference and the argument list of a subroutine or function  
• For the input fee(i,j), the compiler cannot tell if fee is a two-

dimensional array or a procedure that must be invoked  
• Differentiating between these two cases requires knowledge of 
fee’s declared type  

• This information is not syntactically obvious  
• The scanner would classify fee as a name in either case 

Syntax
analysis
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Handling context-sensitive ambiguity 

• We can add productions that derive both subscript expressions and 
argument lists from Factor  

• Handling this in a classical  
expression grammar might  
look like this: 

• Since the last two productions  
have identical right-hand sides,  
this grammar is ambiguous, which  
creates a reduce-reduce conflict  
in an LR(1) table builder

Syntax
analysis

Factor→ FunctionReference 
       | ArrayReference 
       | "(" Expr ")" 
       | num 
       | name  
FunctionReference  
      → name "(" ArgList ")" 
ArrayReference  
      → name "(" ArgList ")"
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Handling context-sensitive ambiguity 

Our grammar results in an LR(1) reduce-reduce conflict  
• Resolving this ambiguity requires extra-syntactic knowledge  

• "Is name a function or an array?" 
• In a recursive-descent parser, the  

compiler writer can combine the  
code for FunctionReference and  
ArrayReference  
• add the extra code required to  

check the name’s declared type 
• In a table-driven parser built with a  

parser generator, the solution must  
work within the framework provided  
by the tools 

Syntax
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Factor→ FunctionReference 
       | ArrayReference 
       | "(" Expr ")" 
       | num 
       | name  
FunctionReference  
      → name "(" ArgList ")" 
ArrayReference  
      → name "(" ArgList ")"
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Handling context-sensitive ambiguity 

Two different approaches to solve this: 
• Rewrite grammar to combine function  

invocation and array reference into a  
single production  
• issue is deferred until a later step in translation 
• there, it can be resolved with information from the declarations  

• Scanner can classify identifiers based on their declared types 
• requires handshaking between scanner and parser  
• works as long as the language has a define-before-use rule  

• Rewritten in this way, the grammar is unambiguous 
• Since the scanner returns a distinct  

syntactic category in each case, the  
parser can distinguish the two cases 
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Factor→ FunctionOrArrayReference 
       | "(" Expr ")" 
       | num 
       | name  
FunctionOrArrayReference  
      → name "(" ArgList ")"

FunctionReference  
      → function_name "(" ArgList ")" 
ArrayReference  
      → array_name "(" ArgList ")"
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Left versus right recursion 

• Top-down parsers need right-recursive grammars  
• Bottom-up parsers can accommodate either left or right recursion  
• Compiler writers must choose between left and right recursion in 

writing the grammar for a bottom-up parser – how? 

Stack depth criterion 
• Left recursion can lead to smaller stack depths  

• Accordingly, lower memory use, less recursions

Syntax
analysis

List → List elt  
      | elt

List → elt List  
      | elt

Left recursive grammar Right recursive grammar
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Left versus right recursion: stack depth 

• The left-recursive grammar shifts elt1 onto 
its stack and immediately reduces it to List 

• Next, it shifts elt2 onto the stack and reduces 
it to List and so on… 

• It proceeds until it has shifted each of the five 
elt’s onto the stack and reduced them to List  

• Thus, the stack reaches  
• a maximum depth of two  
• and an average depth of  =   

• The stack depth of a left-recursive  
grammar depends on the grammar,  
not the input stream

10
6

1
2
3
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List 
List elt5 
List elt4 elt5 
List elt3 elt4 elt5 
List elt2 elt3 elt4 elt5 
List elt1 elt2 elt3 elt4 elt5

List → List elt  
      | elt

Left recursion
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Stack Depth
In general, left recursion can lead to smaller stack depths. Consider two alter-
nate grammars for a simple list construct, shown in Figures 3.28a and 3.28b.
(Notice the similarity to the SheepNoise grammar.) Using these grammars to
produce a five-element list leads to the derivations shown in Figures 3.28c
and 3.28d, respectively. An lr(1) parser would construct these sequences in
reverse. Thus, if we read the derivation from the bottom line to the top line,
we can follow the parsers’s actions with each grammar.

1. Left-recursive grammar This grammar shifts elt1 onto its stack and
immediately reduces it to List. Next, it shifts elt2 onto the stack and
reduces it to List. It proceeds until it has shifted each of the five eltis
onto the stack and reduced them to List. Thus, the stack reaches a
maximum depth of two and an average depth of 10

6 = 1 2
3 .

2. Right-recursive grammar This version shifts all five eltis onto its
stack. Next, it reduces elt5 to List using rule two, and the remaining

List ! List elt

| elt

(a) Left-Recursive Grammar

List ! elt List

| elt

(b) Right-Recursive Grammar

List

List elt5

List elt4 elt5

List elt3 elt4 elt5

List elt2 elt3 elt4 elt5

elt1 elt2 elt3 elt4 elt5

(c) Derivation with Left Recursion

List

elt1 List

elt1 elt2 List

elt1 elt2 elt3 List

elt1 elt2 elt3 elt4 List

elt1 elt2 elt3 elt4

elt5 List

(d) Derivation with Right Recursion

(e) AST with Left Recursion

elt5

elt3

elt4

elt2elt1

(f) AST with Right Recursion

elt1

elt3

elt2

elt4 elt5

n FIGURE 3.28 Left- and Right-Recursive List Grammars.
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Left versus right recursion: stack depth 

• The right-recursive grammar first shifts all 
five elt’s onto its stack 

•  Next, it reduces elt5 to List using rule two  
and the remaining elt’s using rule one 

• Thus, its maxium stack depth will be 5 
and the average will be  

• Its maximum stack depth is bounded  
only by the length of the list  
• With thousands of elements in a list, this 

can become problematic

20
6

= 3
1
3

Syntax
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List 
elt1 List 
elt1 elt2 List 
elt1 elt2 elt3 List 
elt1 elt2 elt3 elt4 List  
elt1 elt2 elt3 elt4 elt5 List

List → elt List  
      | elt

Right recursion
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Left versus right recursion: associativity 

• Left recursion naturally produces left associativity, and right 
recursion naturally produces right associativity  

• In some cases, the order of evaluation makes a difference  
• Consider the string x1 + x2 + x3 + x4 + x5  

• the left-recursive grammar implies a left- to-right evaluation order  
• the right-recursive grammar implies a right- to-left evaluation order  

• With some number systems, such as floating-point arithmetic, these 
two evaluation orders can produce different results [1]

Syntax
analysis

Expr → Expr + Operand 
      | Expr - Operand 
      | Operand

Expr → Operand + Expr 
      | Operand - Expr 
      | Operand
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The problem with floating point

• Consider the expression x1 + x2 + x3 with 
x1=1.0, x2=1.0e10, x3=-1.0e10 
• the left-recursive grammar implies a left-to-right evaluation order:  
(x1 + x2) + x3  
= (1.0 + 1.0e10) + (-1.0e10) = (1.0e10) + (-1.0e10) = 0.0 
 

• the right-recursive grammar implies a right-to-left evaluation order: 
x1 + (x2 + x3) 
= 1.0 + (1.0e10 + (-1.0e10)) = 1.0 + 0.0 = 1.0 

• Obviously, these results should not differ. More details can be found in [3]

Syntax
analysis

This addition is problematic since 
1.0 <<< 1.0e10 (LSBs get shifted out)
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A parser with yacc: scanner
• We’ve seen lex scanners already – each  

token is assigned a number 
(starting at 0 if nothing is specified):

<declarations> 
%% 
<translation rules>  
%% 
<functions>

%{ 
#include <stdio.h> 
enum { IF, THEN, ENDIF, INT, END };  
%} 
%% 
[\n\t\v\ ]   { /* Do nothing, this is whitespace */ }  
if           { return IF; } 
then         { return THEN; }  
endif        { return ENDIF; } 
end          { return END; } 
[0-9]+       { return INT; } 
%%

example1.l

In the declarations section you can 
include C code between %{ and }%. 
We used enums instead of #defines 
to automatically enumerate token 

numbers – yacc will do this  
for us automatically

Our scanner needs to print some  

output, so include the header here
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Code supplied for lex
• We needed a main function that repeatedly 

calls the generated scanner function yylex():

<declarations> 
%% 
<translation rules>  
%% 
<functions>

<previous declarations> 
%% 
<previous regexps and actions> 
%% 
int main (void) {  
  int token = 0; 
  while (token != END) {  
    token = yylex();  
    switch (token) {  
      case IF: printf ("Found if\n"); break; 
      case THEN: printf ("Found then\n"); break; 
      case ENDIF: printf ("Found endif\n"); break; 
      case INT: printf ("Found integer %s\n", yytext); break; 
      case END: printf ("Hanging up... bye\n"); break;  
}}}

example1.l

We call yylex() for each token

The global variable yytext 

contains the character string 

of the scanned token

In a yacc/lex parser and scanner, 
yacc calls yylex() 

automatically for each token
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yacc is quite similar
• Description files also have three parts  

(definitions, rules and auxiliary C  
functions) separated by "%%":

<definitions> 
%% 
<rules>  
%% 
<auxiliary routines>

/* definitions */ 
 .... 

%%  
/* rules */  
.... 
%%  

/* auxiliary routines */ 
....  

example1.y



Compiler Construction 09: Practical parsing, yacc 21

yacc definitions
• Contain information about the tokens 

used in the syntax definition

<definitions> 
%% 
<rules>  
%% 
<auxiliary routines>

%token NUMBER  
%token ID  
%token WORD 4711 
%start nonterminal 
%{ 
… 
%}  

%%  
/* rules */  
%%  

/* auxiliary routines */

example1.yyacc will automatically 

assign token IDs,  

but you can override these

You can tell yacc which 

nonterminal symbol is the start 

symbol (default: the first)

Like in lex, you can include C 

code (headers, global vars,…) 

between %{ and %} here
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yacc rules
• This defines the grammar in a BNF-like 

notations and related C actions

<definitions> 
%% 
<rules>  
%% 
<auxiliary routines>

… 

%%  
/* rules */  

/* here comes your grammar */ 

%%  

/* auxiliary routines */ 
int main(…)( { 
   /* the main function is not automatically generated */ 
}

example1.y

The grammar definition is  

similar to our notation and BNF
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yacc-lex interaction
• yacc parsers assume the existence of function yylex() that 

implements the scanner (lex generated or handwritten) 
• Scanner yylex() return value indicates the type of token found 

• Other values passed in variables yytext and yylval 
• yacc determines integer representations (IDs) for tokens 

• Communicated to scanner in file y.tab.h

yacc

lex

cc

parser.y

scanner.l

y.tab.c

lex.yy.c

y.tab.h parser.exe

source

output
yylex() function

yyparse() function

Use "yacc -d" to 

generate y.tab.h



Compiler Construction 09: Practical parsing, yacc 24

yacc example: parser
A yacc parser to convert binary numbers  
to decimal

<definitions> 
%% 
<rules>  
%% 
<auxiliary routines>

%{ 
#define YYDEBUG 1 
#include <stdio.h> 
#include <stdlib.h> 

void yyerror(char *s); 
int yylex(void); 
extern char *yytext; 

%} 

%token ZERO ONE 
%start N 

bindec.y %%  
N : L    { printf("\n%d", $$); } 
L : L B  { $$=$1*2+$2; } 
  | B    { $$=$1; } 
B : ZERO { $$=$1; } 
  | ONE  { $$=$1; } 
%% 
void yyerror(char *s) 
{ 
  printf(\n%s: %s\n", s, yytext); 
} 

int main() 
{ 
  while(yyparse()); 
}

Token IDs  
(→ y.tab.h)

Start parsing!

Grammar, will be 

implemented in 

function yyparse()

enum yytokentype 
{ 
    ZERO = 258, 
    ONE = 259 
};

y.tab.h
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yacc example: scanner
The lex scanner for our parser

<definitions> 
%% 
<rules>  
%% 
<auxiliary routines>%{ 

  #include <stdio.h> 
  #include <stdlib.h> 
  #include "y.tab.h" 
  extern int yylval; 
%} 
%% 

0 { yylval=0; return ZERO; } 
1 { yylval=1; return ONE; } 

[ \t] {;} 
\n return 0; 
. return yytext[0]; 

%% 
int yywrap() 
{ 
  return 1; 
}

bindec.l

Scanner description, 

implemented in  yylex()

Additional information about  

parsed token in yylval

Token IDs ZERO/ONE returned to yyparse()

Numeric value for token passed in yylval

yacc lex
yylex()

yyparse()

Token, 
yylval, yytext

In
pu

t f
ile
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yyparse() and yylex()
• yyparse() called once (or repeatedly until EOF) from main (user-supplied) 
• It repeatedly calls yylex() until done 

• On syntax error, calls yyerror() (user-supplied) 
• Returns 0 if all input was processed 
• Returns 1 if aborting due to syntax error 

• yylex() called automatically (repeatedly) from yyparse()  
• Every time a new token is required by the parser 
• Its return value is the recognized token 

• Defined in y.tab.h, generated from %token declarations by yacc 
(option -d) 

• Token encoding: EOF = 0, character literals get their ASCII value, other 
tokens are assigned numbers > 127 

• Additional information passed back in variables yylval and yytext
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L : L B  { $$=$1*2+$2; }

27

yacc grammar actions
Like in lex, actions can be specified as C code after each production 
• They are executed after the production RHS has been derived 
• Special identifiers $$, $1, $2...  refer  

to items on the parser's stack

%%  

N : L    { printf("\n%d", $$); } 
L : L B  { $$=$1*2+$2; } 
  | B    { $$=$1; } 
B : ZERO { $$=$1; } 
  | ONE  { $$=$1; } 

%%

$1 is the semantic value of the first 

symbol on the right-hand side. 

For terminal symbols like ZERO and 

ONE, it stands for the value of 

yylval returned by the scanner.

$$ is the val
ue returned 

by the produc
tion

$2$$

{ yyval=yyvsp[-1]*2+yyvsp[0]; }

yacc generates this  
line of C code:

$1
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What’s next?

• Data types 
• Semantic analysis 
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