
Compiler Construction
Lecture 8: LR-parsing

Michael Engel

Compiler Construction 08: LR-parsing 2

Overview
• Bottom-up parsing revisited
• Deciding when to reduce
• LR parsers

• General idea
• LR(1) parsers
• LALR

Compiler Construction 08: LR-parsing 3

Top-down parsing Syntax
analysis

LL(1) parsers generate a parse tree from top to bottom:

𝜷

𝛂

𝛔

u0 uRv1

u2

v

initial part
of the input
token stream
that is already
derived

input token stream
remaining to be read

Part of the syntax tree
that has already been derived

𝛂: current NT symbol

At this point, the parser tries
to find a derivation for 𝛂:
 u0𝛼u2 → u0vu2

uR has to be derivable from u2
to complete parsing
(otherwise: syntax error)

Compiler Construction 08: LR-parsing 4

Bottom-up parsing Syntax
analysis

Can we also construct the parse tree from bottom to top?

𝛂

𝛔

u0 uRu

u2

initial part
already
reduced

input token stream
remaining to be read

v1

𝛂

v2

u2

We try to guess a production 𝛂 → v1v2

Compiler Construction 08: LR-parsing 5

Parsing compared in detail Syntax
analysis

Top-down and bottom-up parsing and syntax tree construction

Top-down parsing / LL(1):
decides to build X after seeing the
first token of its subtree

S

t r u v r u r u...

A X

Botton-up parsing / LR(1):
decides to build X after seeing the
first token following its subtree

A X

B C

t r u v r u r u...

Botton-up parsing creates partial
subtrees (a "forest") for parts of the
input streams it can reduce

Compiler Construction 08: LR-parsing 6

General idea of bottom-up parsing Syntax
analysis

• Bottom-up parsing starts from the input token stream (whereas
top-down starts from the grammar start symbol)

• It reduces a string to the start symbol by inverting productions
• trying to find a production matching the right hand side

E → T + E | T
T → int × T | int | ε

E ← T + E | T
T ← int × T | int | ε

• Consider the input token
stream int * int + int:

• Reading the productions
in reverse (from bottom
to top) gives a rightmost
derivation

int × int + int T → int
int × T + int T → int × T
T + int T → int
T + T E → T
T + E E → T + E
E

Compiler Construction 08: LR-parsing 7

General idea of bottom-up parsing Syntax
analysis

• Bottom-up parsing starts from the input token stream (whereas
top-down starts from the grammar start symbol)

• It reduces a string to the start symbol by inverting productions
• trying to find a production matching the right hand side

E → T + E | T
T → int × T | int | ε

E ← T + E | T
T ← int × T | int | ε

• Consider the input token
stream int * int + int:

• Reading the productions
in reverse (from bottom
to top) gives a rightmost
derivation

int × int + int T → int
int × T + int T → int × T
T + int T → int
T + T E → T
T + E E → T + E
E

Why did we not immediately
reduce the first "int" in the
token stream using the
production T → int?

Compiler Construction 08: LR-parsing 8

Taking right decisions: LR parsing Syntax
analysis

Idea: we extend the general idea of bottom-up parsing:
• Add the EOF token ($) and an extra start rule

• This helps to uniquely identify when we constructed the root node of
the parse tree

• As before, the parser uses a stack of terminal and NT symbols
• The parser looks at the current input token and decides between

one of the following actions:
• shift: Push the input token onto the stack, read the next token
• reduce: Match the top symbols on the stack with a production right-

hand side. Pop those symbols and push the left-hand side
nonterminal. At the same time, build this part of the tree

• accept: when the parser is about to shift $, the parse is complete
• The parser uses a DFA (encoded in a table) to decide which action

to take and which state to go to after each shift action

Compiler Construction 08: LR-parsing 9

LR parsing example Syntax
analysis

0 S → Stmt $
1 Stmt → id "=" Exp
2 Exp → id
3 Exp → Exp "+" id↑ id = id + id $

Stack ↑ Input

id ↑ = id + id $

Grammar:

Notation:

id = ↑ id + id $

shift

shift

id = id ↑ + id $

shift

id = Exp ↑ + id $
 |
 id

reduce Exp → id

id = Exp + ↑ id $
 |
 id

shift

id = Exp + id ↑ $
 |
 id

shift

reduce Exp → Exp "+" id

id = Exp ↑ $
 /|\
 Exp + id

 |
 id

 Stmt ↑ $
 /|\
id = Exp
 /|\
 Exp + id

 |
 id

reduce
 Stmt → id "=" Exp

Compiler Construction 08: LR-parsing

• The parser uses a DFA (a deterministic finite automaton) to
decide whether to shift or reduce

• The states in the DFA are sets of LR items

10

LR(1) items Syntax
analysis

• An LR(1) item is a production extended with:
• A dot (•), corresponding to the position in the input sentence
• One or more possible lookahead terminal symbols, t,s

(we will use ? when the lookahead doesn’t matter)
• The LR(1) item corresponds to a state where:

• The topmost part of the stack is α
• The first part of the remaining input is expected to match β(t|s)

X → α ● β t,sLR(1) item:

Compiler Construction 08: LR-parsing 11

Parser DFA: constructing state 1
First, take the start production and
place the dot in the beginning…

Syntax
analysis

0 S → E $
1 E → T "+" E
2 E → T
3 T → id

Grammar:

S → ● E $?

S → ● E $?
E → ● T "+" E $
E → ● T $

Note that there is a nonterminal
E right after the dot, and it is followed by a terminal $.
Add the productions for E, with $ as the lookahead

There is a nonterminal T right after the dot, which is
followed by either "+" or $. Add the productions for T,
with "+" and $ as the lookahead.  
(We write them on the same line as a shorthand.)

S → ● E $?
E → ● T "+" E $
E → ● T $
T → ● id +,$

We have already added productions for all NTs that
are right after the dot. Nothing more can be added. 
We are finished constructing state 1

state 1

Adding new productions for nonterminals following the dot, until no more
productions can be added, is called taking the closure of the LR item set

Compiler Construction 08: LR-parsing 12

Constructing the next states Syntax
analysis

0 S → E $
1 E → T "+" E
2 E → T
3 T → id

Note that the dot is followed by E, T, and id in state 1.
For each of these symbols, create a new set of LR items, by advancing the dot
past that symbol. Then complete the states by taking the closure
(Nothing had to be added for these states)

S → ● E $?
E → ● T "+" E $
E → ● T $
T → ● id +,$

state 1

S → E ● $?

state 2

T → id ● +,$

state 4

E → T ● "+" E $
E → T ● $

state 3

E

T

id

Compiler Construction 08: LR-parsing 13

Completing the LR DFA Syntax
analysis

0 S → E $
1 E → T "+" E
2 E → T
3 T → id

Complete the DFA by advancing the dot, creating new states, completing them
by taking the closure.
If there is already a state with the same items, we use that state instead.

S → ● E $?
E → ● T "+" E $
E → ● T $
T → ● id +,$

state 1

S → E ● $?

state 2

T → id ● +,$

state 4

E → T ● "+" E $
E → T ● $

state 3

E -> T "+" E ● $

E → T "+" ● E $
E → ● T "+" E $
E → ● T $
T → ● id +,$

state 6

state 5

E

T

id

T

E

id

"+"

Compiler Construction 08: LR-parsing 14

Constructing the LR table
To write (or generate) a parser, we express the DFA using a table:

Syntax
analysis

state "+" id $ E T

1
2
3
4
5
6

• For each token edge t, from state j to
state k, add a shift action "s k"  
(shift and goto state k) to table[j,t]

• = reading a token and pushing it
onto the stack

• For each state j that contains an LR
item where the dot is at the end, add
a reduce action "r p" (reduce p) to
table[j,t], where p is the production
and t is the lookahead token

• = popping the right-hand side of
a production off the stack

• For each nonterminal edge X, from
state j to state k, add a goto action
"g k" (goto state k) to table[j,X]

• = pushing the left-hand side
nonterminal onto the stack

• For a state j containing an LR item
with the dot to the left of $, add an
accept action "a" to table[j,$].

• If we are about to shift $, the
parse has succeeded

Compiler Construction 08: LR-parsing 15

Constructing the LR table
To write (or generate) a parser, we express the DFA using a table:

Syntax
analysis

state "+" id $ E T

1 s 4 g 2 g 3
2 a
3 s 5 r p2
4 r p3 r p3
5 s 4 g 6 g 3
6 r p1

• For each token edge t, from state j to
state k, add a shift action "s k"  
(shift and goto state k) to table[j,t]

• = reading a token and pushing it
onto the stack

• For each state j that contains an LR
item where the dot is at the end, add
a reduce action "r p" (reduce p) to
table[j,t], where p is the production
and t is the lookahead token

• = popping the right-hand side of
a production off the stack

• For each nonterminal edge X, from
state j to state k, add a goto action
"g k" (goto state k) to table[j,X] 
= pushing the left-hand side  
 nonterminal onto the stack

• For a state j containing an LR item
with the dot to the left of $, add an
accept action "a" to table[j,$].

• If we are about to shift $, the
parse has succeeded

Compiler Construction 08: LR-parsing 16

DFA ↔ LR table state "+" id $ E T

1 s 4 g 2 g 3
2 a
3 s 5 r p2
4 r p3 r p3
5 s 4 g 6 g 3
6 r p1

S → ● E $?
E → ● T "+" E $
E → ● T $
T → ● id +,$

state 1

S → E ● $?

state 2

T → id ● +,$

state 4

E → T ● "+" E $
E → T ● $

state 3
E → T "+" ● E $
E → ● T "+" E $
E → ● T $
T → ● id +,$

state 6

state 5

E

T

id

T

E

id

"+"

0 S → E $
1 E → T "+" E
2 E → T
3 T → id

E -> T "+" E • $

Compiler Construction 08: LR-parsing 17

LR parsing algorithm Syntax
analysis

push $;
push start state, s0;
word ← NextWord();

while (true) {
 state ← top of stack;
 if Action[state,word] = "reduce A → β" {
 pop 2 × |β| symbols; // 2 × |β| due to terminal symbol and state
 state ← top of stack;
 push A;
 push Goto[state, A];
 }
 else if Action[state,word] = ‘shift si’ {
 push word;
 push si;
 word ← NextWord();
 }
 else if Action[state,word] = "accept" { break; }
 else Fail();
}
return success; /* executed break on ‘accept’ case */

Compiler Construction 08: LR-parsing 18

Using the LR table for parsing Syntax
analysis

state "+" id $ E T

1 s 4 g 2 g 3
2 a
3 s 5 r p2
4 r p3 r p3
5 s 4 g 6 g 3
6 r p1

• Use a symbol stack and a state stack
• The current state is the state stack top

• Push state 1 to the state stack

• Perform an action for each token:
• Case Shift s:

• Push the token to the symbol stack
• Push s to the state stack
• The current state is now s

• Case Reduce p:
• Pop symbols for the RHS of p
• Push the LHS symbol X of p
• Pop the same number of states
• Let s1 = the top of the state stack
• Let s2 = table[s1,X]
• Push s2 to the state stack
• The current state is now s2

• Case Accept: Report successful parse

Compiler Construction 08: LR-parsing 19

LR parsing example Syntax
analysis

0 S → E $
1 E → T "+" E
2 E → T
3 T → id

state "+" id $ E T

1 s 4 g 2 g 3
2 a
3 s 5 r p2
4 r p3 r p3
5 s 4 g 6 g 3
6 r p1

state
stack

symbol
stack input action

1 id "+" id $ shift 4

1 4 id "+" id $ reduce p3

1 3 T "+" id $ shift 5

1 3 5 T "+" id $ shift 4

1 3 5 4 T "+" id $ reduce p3

1 3 5 3 T "+" T $ reduce p2

1 3 5 6 T "+" E $ reduce p1

1 2 E $ accept

Parsing id "+" id $

Compiler Construction 08: LR-parsing 20

Conflict in an LR table Syntax
analysis

0 S → E $
1 E → E "+" E
2 E → E "*" E
3 E → id

Different grammar to previous example!

Parts of the DFA:

E → E ● "+" E $
E → E "*" E ● "+"

"+"

state 3

state 5

Fill in the parse table –
what is the problem?

state … "+" … … …

…
3
…

Parts of the parse table:

Compiler Construction 08: LR-parsing 21

Conflict in an LR table Syntax
analysis

0 S → E $
1 E → E "+" E
2 E → E "*" E
3 E → id

state … "+" … … …

…
3 s 5, r p2
…

Parts of the parse table:

Parts of the DFA:

"+"

state 3

state 5 There is a shift-reduce conflict, the grammar is ambiguous.
In this case, we can resolve the conflict by selecting one of
the actions.
To understand which one, think about what the top of the
stack looks like. Think about what will happen later if we
take the shift rule or the reduce rule.

E → E ● "+" E $
E → E "*" E ● "+"

Compiler Construction 08: LR-parsing 22

Analyzing LR conflicts
Example parser generator output:

Syntax
analysis

WARNING: resolved SHIFT/REDUCE conflict on [PLUS] by selecting SHIFT:
 REDUCE exp = exp PLUS exp
 SHIFT PLUS
Context:
 exp = exp PLUS exp ● [PLUS]
 exp = exp ● PLUS exp [PLUS]

 exp → exp PLUS exp ●
 exp → exp ● PLUS exp

 … exp PLUS exp ● PLUS exp …

Align the dots in the state:

The top of the stack might look like this:

top of stack remaining input

Here, the parser generator
automatically resolves the
conflict by shifting.
Is this what we want?

"Context" lists the LR-items
in the conflicting state

Compiler Construction 08: LR-parsing 23

Analyzing LR conflicts Syntax
analysis

Align the dots in the state:

 exp → exp PLUS exp ● PLUS
 exp → exp ● PLUS exp ?

exp

 … exp PLUS exp ● PLUS exp …

exp

exp

 … exp PLUS exp ● PLUS exp …

exp

if we shift if we reduce

Which rule should
we choose?

Compiler Construction 08: LR-parsing 24

Different kinds of conflicts

Shift-reduce conflicts can sometimes be solved with precedence rules.
In particular for binary expressions with priority and associativity.
For other cases, you need to carefully analyze the shift-reduce conflicts
to see if precedence rules are applicable, or if you need to change the
grammar.
For reduce-reduce conflicts, it is advisable to think through the
problems, and change the grammar.

Syntax
analysis

E → E ● "+" E ?
E → E "*" E ● "+"

A → B C ● t
D → C ● t

a shift-reduce conflict

a reduce-reduce conflict

Compiler Construction 08: LR-parsing 25

Typical precedence rules Syntax
analysis

E -> E "==" E
E -> E "**" E
E -> E "*" E
E -> E "/" E
E -> E "+" E
E -> E "-" E
E -> ID
E -> INT

// Precedence rules
%right POWER
%left TIMES, DIV
%left PLUS, MINUS
%nonassoc EQ

Precedence rules for an LR expression
grammar might look like this:

Shift-reduce conflicts can be
automatically resolved using
precedence rules

Operators in the same rule have the
same priority
• e.g., PLUS, MINUS

Operators in an earlier rule have
higher priority
• e.g. TIMES has higher priority than

PLUS)

Compiler Construction 08: LR-parsing 26

How the precedence rules work
A rule is given the priority and associativity of its rightmost token

Syntax
analysis

For two conflicting rules with different priority, the rule with the highest priority
is chosen:

E → E ● "+" E ?
E → E "*" E ● "+"

E → E ● "*" E ?
E → E "*" E ● "*"

shift is chosenreduce is chosen

Two conflicting rules with the same priority have the same associativity
• Left-associativity favors reduce, right-associativity favors shift
• Non-associativity removes both rules from the table

• input following that pattern will cause a parse error

E → E "+" E ● "+"
E → E ● "+" E ?

E → E "**" E ● "**"
E → E ● "+" E ?

E → E "==" E ● "=="
E → E ● "==" E ?

reduce is chosen shift is chosen no rule is chosen

Compiler Construction 08: LR-parsing 27

Different variants of LR(k) parsers Syntax
analysis

Type Characteristics

LR(0) LR items without lookahead
Not very useful in practice

SLR
Simple LR

Look at the FOLLOW set to decide where to put reduce actions
Can parse some useful grammars

LALR(1)

often used
in practice

Merges states that have the same LR items, but different
lookaheads (LA) → leads to much smaller tables than LR(1)

Used by most well known tools: yacc, CUP, Beaver, SableCC, ...
Sufficient for most practical parsing problems

LR(1) Slightly more powerful than LALR(1)
Not used in practice – the tables become very large

LR(k) Far too large tables for k>1

Compiler Construction 08: LR-parsing 28

Different variants of LR(k) parsers Syntax
analysis

All context-free (type 2) grammars

Different versions of LR(k) parsers can be used with grammars
(= accept languages) of differing complexity:

LR(0) SLR
LALR LR(1) LR(k)

unambiguous

ambiguous

Compiler Construction 08: LR-parsing 29

LL(k) vs LR(k) parsers Syntax
analysis

LL(k) LR(k)

Parses input Left-to-right

Derivation Leftmost Rightmost

Lookahead k symbols

Build the tree top down bottom up

Select rule after seeing the
first k tokens

after seeing all of its tokens
plus additional tokens

Left recursion no yes
Unlimited common

prefix no yes

Resolve ambiguities
through rule priority dangling else dangling else,

associativity, priority
Error recovery trial-and-error good algorithms exist

Implement by hand? possible too complicated
use a generator

Compiler Construction 08: LR-parsing 30

LL(k) vs. LR(k) grammars Syntax
analysis

SLR
LALR LR(1) LR(k) ambiguous

grammars

unambiguous grammars

SLR

LALR

LR(1)

LR(k)

LR(0)LL(0)

LL(1)

LL(k)

Compiler Construction 08: LR-parsing 31

What’s next?

• Practical considerations when constructing parsers
• Overview of Parser generators
• Using the yacc parser generator and examples

• Interaction between yacc and lex

Syntax
analysis

