B NTNU | sioncindrecnoivay

Compiler Construction
Lecture 5: Introduction to Parsing

Michael Engel

Overview

« Compiler structure revisited
 Interaction of scanner and parser
« Context-free languages
* Ambiguity of grammars
« BNF grammars
* Language classes and Chomsky hierarchy

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing

Stages of a compiler (1)

Source code

* character stream
' Lexical | Syntax | Semantic | Code | Code
anaIyS|s “tanalysisf | analysis | optimization§ | generation

foken sequence

Lexical analysis (scanning):

Split source code into lexical units

— Recognize tokens (using regular expressions/automata) machine-level program
— Token: character sequence relevant to source language grammar

ﬁx_y+42 »- a‘ld(x) |op(=) !Jd(y) |op(+) gn‘umber(42)

character stream token sequence

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 3

Stages of a compiler (2}

Source code

Lexical * Syntax (e | Semantic | Code | Code
analysis} # | analysis| # a analysis ~ |optimization§ " | generation

token sequence syntax tree

i

Syntax analysis (parsing)
— Uses grammar of the source language

— Decides if input token sequence can be
derived from the grammar

expression — term { (+|-) term }
term — factor { (*|/) factor }
factor — "(' expression ')'

| id | number

]

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 4

Interaction of scanner and parser

request
token ~ _Scanner 4 q >t _parser syntax tree
sequence | Lexical | WSS Syntax
id(x) g analysis [_" y analysis | (=) |
. source code foken syntax tree j
|op(=)] lido| |
|id(y) | |
Often, interaction between parser and
op(+)] scanner takes place
gnumber(42) e e.g., parser requests next tokens from
| l scanner
“ [0 9]+ { Ieturn(NUMBER); } 7 expression — term { (+]|-) terzﬁ }
| [A-Za-z][A-Za-20-9]* { return(ID); } | | texm — factor { (*|/) factor }
= { return(oP); } ‘ ‘ factor — '(' expression ')'
\+ { return(OP); 1} | id | number
regular expressions/automaton grammar

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 5

Syntax

Parsing analysis

« Parsing is the second stage of the compiler’s front end
it works with program as transformed by the scanner
it sees a stream of words
« each word is annotated with a syntactic category

syntactic categor @ | ;l -
(re}t/urned tokengtypye) ! number(42 ord (yytext

« Parser derives a syntactic structure for the program
« it fits the words into a grammatical model of the source
programming language
« Two possible outcomes:

« ¢ input is valid program: builds a concrete model of the
program for use by the later phases of compilation

« X input is not a valid program: report problem and diagnosis

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 6

Definition of parsing anaiyat

« Task of the parser:

« determining if the program being compiled is a valid sentence
in the syntactic model of the programming language

* A Dbit more formal:
« the syntactic model is expressed as formal grammar G

« Some string of words s is in the language defined by G we
say that G derives s

« for a stream of words s and a grammar G, the parser tries to
build a constructive proof that s can be derived in G

— this is called parsing
« It's not as bad as it sounds...
« we let the computer do (most of) the work!

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 7

i 'Syntax |

Specifying language syntax | analysis

« We need...

« a formal mechanism for specifying the syntax of the source
language (grammar)

« a systematic method of determining membership in this
formally specified language (parsing)

 Let’'s make our lives a bit easier

« we restrict the form of the source language to a set of
languages called context-free languages

 typical parsers can efficiently answer the membership
guestion for those

« Many different parsing algorithms exist, we will look at
« top-down parsing: recursive descent and LL(1) parsers
- bottom-up parsing: LR(1) parsers

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 8

i 'Syntax |

Parsing approaches in general | analysis

« Top-down parsing: recursive descent and LL(1) parsers

« Top-down parsers try to match the input stream against the
productions of the grammar by predicting the next word (at
each point)

* For alimited class of grammars, such prediction can be both
accurate and efficient

« Bottom-up parsing: LR(1) parsers

« Bottom-up parsers work from low-level detail—the actual
sequence of words—and accumulate context until the
derivation is apparent

« Again, there exists a restricted class of grammars for which we
can generate efficient bottom-up parsers

 In practice, these restricted sets of grammars are large enough to
encompass most features of interest in programming languages

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 9

“ Syntax

Expressing syntax |analysis

 We already know a way to express syntax: regular expressions
« Why are regexps not suitable for describing language syntax?

Example: recognizing algebraic expressions over variables
and the operators +, -, x, +

[a.z]([a.z] | [0.9])*
[a.z]([a.z] | [0.9])*

'variable
| expression

((+]-1*|+) [a.z]([a.z] | [0.9])*)*

« This regexp matches e.g. "a+bxc" and "dee+daaxdoo”
 However, there is no way to express operator precedence
« should + or x be executed first in "a+bxc"?

« standard rule from algebra suggests:
"x and + have precedence over + and -"

© N'TINU | Sonwegian University of Compiler Construction 05: Introduction to Parsing 10

Science and Technology

Expressing syntax: regexps? | anaiysis

‘variable
| expression

[a.2]([a.z] | [0.9])*
[a.z]([a.z] | [0.9])*

((+]-1%[+) [a.z]([a.z] | [0.9])*)*

 There is no way to express operator precedence
 to enforce evaluation order, algebraic notation uses »
parentheses e arontheses are E:a:n:gg\}
« Adding parentheses in regexps is tricky... [in red and encios®”

* an expression can start with a "(", so we need the option for
an initial "(". Similarly, we need the option for a final ")":

(*("[€) [awz] ([a.2] [[0.91)* ((+-[x]+) [a.z] ([a.2][[0.9)*)* ()" [e)

« This regexp can produce an expression enclosed in parentheses,
but not one with internal parentheses to denote precedence

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 11

Expressing syntax: regexps? anaiyat

(*("12) [a.2]([a.2]][0.9)* ((+]-|x|*) [a-z] ([a-2]|[0-91)*)* (*)"[2)

« This regexp can produce an expression enclosed in parentheses, but not
one with internal parentheses to denote precedence

 Internal instances of "(" all occur before a variable
 similarly, the internal instances of ")" all occur after a variable
« so let’'s move the closing parenthesis inside the final *:

([e) [awz] ([a.2][[0.91)* ((+]-]x]+) [anz] ([a.2][[0.91)* ()"[e))*
This regexp matches both “a+bxc” and “(a+b)xc.”

* it will match any correctly parenthesized expression over variables and
the four operators in the regexp

« Unfortunately, it also matches many syntactically incorrect expressions
« such as “a+(bxc” and “a+b)xc).”

 We cannot write a regexp matching all expressions
with balanced parentheses: "DFAs cannot count”

° ‘\Ai

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 12

“ 'Syntax

Context-Free Grammars | analysis

« We need a more powerful notation than regular expressions
« ...that still leads to efficient recognizers
« Traditional solution: use a context-free grammar (CFQG)

« grammar G:
set of rules that describe how to form sentences

« language L(G) defined by G:
collection of sentences that can be derived from G

« Example: consider the following grammar SN

| SheepNoise — baa SheepNoise . \

| | baa ey

« each line describes a rule or production of the grammar

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 13

Syntax

Context-Free Grammars analysis

SheepNoise — baa SheepNoise
lﬂ | baa

* The first rule SheepNoise — baa SheepNoise reads:
"SheepNoise can derive the word baa followed by more SheepNoise"

* SheepNoise is a syntactic variable representing the set of strings
that can be derived from the grammar § written in italics

« We call these syntactic variables "nonterminal symbols" NT
Each word in the language defined by the grammar (baa) is a

"terminal symbol" written in bold letters be read as "OR™:
] ||\l| can e e-lther
« The second rule reads: the parser can CTO%" ' le

“SheepNoise can also (|) derive the string baa” the first or
« The "|"-notation is a shorthand to avoid writing two separate rules:

| SheepNoise — baa SheepNoise
lﬂ SheepNoise — baa

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 14

“ 'Syntax

Grammars and languages | analysis

SheepNoise — baa SheepNoise
lﬂ | baa

« Can we figure out which sentences can be derived from a
grammar G?

* Ii.e., what are valid sentences in the language L(G)?
 First, identify the goal symbol or start symbol of G

* represents the set of all strings in L(G)

 thus, it cannot be one of the words in the language

* Instead, it must be one of the nonterminal symbols introduced
to add structure and abstraction to the language

« Since our grammar SN has only one nonterminal,
SheepNoise must be the start symbol

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 15

Grammars and languages aneiyar

2 SheepNoise — baa SheepNoise
E b
| ,, | baa

start here

» Deriving a sentence:

 start with a prototype string that contains just the start symbol,
SheepNotise

« pick a nonterminal symbol, a, in the prototype string
 choose a grammar rule, a — 3
« and rewrite (replace) a with (3

» Repeat until the prototype string contains no more nonterminals
 the string then consists entirely of words (terminal symbols)
= it is a sentence in the language

 every version of the prototype string that can be derived is
called a sentential form

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 16

* Syntax

Grammars and languages analysis
~tart here Emm-b SheepNoise — baa SheepNo%se
. lﬂ | baa
« Examples:
Rule Sentential form Rule Sentential form
SheepNoise SheepNoise
2 baa 1 baa SheepNoise

2 baa baa

Rewrite with rule 2

@ NTNU

Rewrite with rule 1, then rule 2

Rule 1 lengthens the string while rule 2 eliminates the NT SheepNoise

The string can never contain more than one instance of SheepNoise

All valid strings are derived by >= 0 applications of rule 1, followed by rule 2
Applying rule 1 k times followed by rule 2 generates a string with k+1 baas.

| Norwegian Lniversity of Compiler Construction 05: Introduction to Parsing 17

Science and Technology

| Syntax

A more useful example... analysis

we added rule numbers, these -—-~»-& 1. Expr = "(" Expr ")"
are not part of the grammar 12, | Expr Op name
B | name
L. Op > +
5. | -
6. | x
7. | <
Expr
Rule Sentential form / l
Expr
2 Expr Op name KEXPf\‘ Op name (c)
6 Expr x name v l
1 "(" Expr ")" x name (" Expr ")" «
2 "(" Expr Op name ")" x name Y |\
4 "(" Expr + name ")" x name Expr dg name (b)
3 "(" name + name ")" x name l
H H . n n v I
Rightmost derivation of "(a+b) x c name(a) + Equivalent
parse tree
@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 18

“ Syntax

A more useful example... |analysis

« This simple context-free grammar for ~ |*- EXP7 —i E(Egpr ")
: ‘ XpT Nname
expressions cannot generate a | naﬁe g
sentence with unbalanced or Op - +

improperly nested parentheses I
I

X

* Only rule 1 can generate an open

parenthesis; it also generates the

matching close parenthesis Expr
* Thus, it cannot generate strings such /l
as ua+ (bXC” or ua+b) xc)u /EXPT\ 0f name(c)
 a parser built from the grammar will (" Expr)" .
not accept such strings VAR
« Context-free grammars allow to specify £xpr Op name(b)
constructs that regexps do not v
name(a) + parse tree

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 19

Order of derivations

Rightmost:
rewrite, at each step, the rightmost nonterminal

Rule Sentential form
Expr

Expr Op name

Expr x name

"(" Expr ")" x name

"(" Expr Op name ")" x name

"(" Expr + name ")" x name

WA N 20N

"(" name + name ")" x name

Leftmost: rewrite, at each step, the leftmost nonterminal Expr

Rule Sentential form
Expr
Expr Op name
"(" Expr ")" Op name
" Expr Op name ")" Op name

" name Op name ")" Op name

D A~ WODN =N

(
(

"(" name + name ")" Op name
(

" name + name ")" x name

@ NTNU | sanetandrecnoiogy

Syntax
analysis

1 -

2 | Expr Op name
3. | name

4. Op — +

5 | -

6 |

7 |

X

(" Expr ")

Expr 0p

name(a) +

Expr
e
Op
| ™ |
(" Expr)" «
PN
name (b)
l l parse tree

Compiler Construction 05: Introduction to Parsing

name (c)

identical for both!

20

“ 'Syntax

Ambiguity of grammars | analysis

* For the compiler, it is important that each sentence in the
language defined by a context-free grammar has a unique
rightmost (or leftmost) derivation

« A grammar in which multiple rightmost (or leftmost) derivations
exist for a sentence is called an ambiguous grammar

it can produce multiple derivations and multiple parse trees

« Multiple parse trees imply multiple possible meanings for a
single program!

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 21

Syntax
analysis

Ambiguity of grammars: example

n H " - - — . .
dangl'ng else’- Statement — 1if Expr then Statement else Statement

1.
problem in 2. | if Expr then Statement
ALGOL-like 3. | Assignment Fy
lanauaaes B | ..other statements..
guag — . , I

(e.g. PASCAL)

nelse" part is optiona‘ll

This statement

l 1f Exprl then 1f ExprZ then A551gnment1 else A551gnment2

has two distinct rightmost derivations with different behaviors:

s ,%MWN‘
if Expr, then Statement if Expr, then Statement else Statement

N l

if Expr, then Statement Assignment,

|

Assignment, Assignment, Assignment,

if Expr, then Statement else Statement

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 22

* Syntax

Removing ambiguity |analysis

We can modify the grammar to include a rule that determined which
if controls an else:

Statement — 1if Expr then Statement

| if Expr then WithElse else Statement
| | Assignment
* WithElse — if Expr then WithElse else WithElse
| Assignment

This solution restricts the set of statements that can occur in the
then part of an if-then-else construct

* It accepts the same set of sentences as the original grammar

* but ensures that each else has an unambiguous match to a
specific if

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 23

Syntax

Removing ambiguity: example

analysis
The mOdIfled grammar 1. Statement — if Expr then Statemen
has On|y one rightmost | 2. | if Expr then WithElse else Statement
derivation for the example |* | Aos tamnen:
p L. WithElse — if Expr then WithElse else WithElse
5. | Assignment

. 1f Exprl then if Expr2 then Assignmentl else Assignment?2

L

Rule Sentential form
Statement
1 if Expr then Statement
2 if Expr then if Expr then WithElse else Statement
3 if Expr then if Expr then WithElse else Assignment
5 if Expr then if Expr then Assignment else Assignment

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 24

“ 'Syntax

Addendum: Backus-Naur-Form |.:

« The traditional notation to represent a context-free grammar
is called Backus-Naur form (BNF) [1]

 BNF denotes nonterminal symbols by wrapping them in angle
brackets, like (SheepNoise)

« Terminal symbols are underlined.

* The symbol ::= means "derives,"
and the symbol | means "also derives"

* In BNF, the sheep noise grammar becomes:

| <SheebNbise> ::= baa (SheepNoise)
lj | baa

* This is equivalent to our grammar SN
e ...and was easier to typeset in the 1950’s @&

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 25

nce and Technology

Syntax
analysis

Addendum: Types of languages

« Noam Chomsky (*1928):
American linguist, philosopher, cognitive scientist,
historian, social critic, and political activist

« The Chomsky hierarchy is a containment hierarchy
of classes of formal grammars [2]

« Defines four types (0-3) of recursively enumerable
languages with increasing (type O)
complexity from regular context-sensitive
languages to recursively (type 1)
enumerable

* Accordingly, recognizing the
language requires a succes- regular languages

(type 3)

sively more complex method

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 26

References

[1] P. Naur (Ed.), J.W. Backus, F.L. Bauer, J. Green, C. Katz, J. McCarthy, et al.:
Revised report on the algorithmic language Algol 60,
Commun. ACM 6 (1) (1963) 1-17

[2] Noam Chomsky, Marcel P. Schutzenberger:
The algebraic theory of context free languages,
In Braffort, P.; Hirschberg, D. (eds.). Computer Programming and Formal Languages
Amsterdam: North Holland. pp. 118-161, 1963

@ NTNU | S oy Compiler Construction 05: Introduction to Parsing 27

