B NTNU | sioncindrecnoivay

Compiler Construction
Lecture 4: Lexical analysis in the real world

Michael Engel

Overview

 NFA to DFA conversion

* Subset construction algorithm
* DFA state minimization:

* Hopcroft's algorithm

* Myhill-Nerode method
« Using a scanner generator

* |ex syntax and usage

* lex examples

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 2

What have we achieved so far?

« We know a method to convert a regular expression:
(all | and)

into a nondeterministic finite automaton (NFA):

using the McNaughton, Thompson and Yamada algorithm

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 3

Overhead of constructed NFAs

Let's look at another example: a(b|c)*
« Construct the simple NFAs for a, b and ¢

« Construct the NFA for b|c

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 4

Overhead of constructed NFAs

* Now construct the NFA for (b]c)*
&

« Looks pretty complex already? We're not even finished...

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 5

Overhead of constructed NFAs

 Finally, construct the NFA for a(b|c)*

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 6

From NFA to DFA

* An NFA is not really helpful
...since its implementation is not obvious

* We know: every DFA is also an NFA (without e-transitions)

 Every NFA can also be converted to an equivalent DFA
(this can be proven by induction, we just show the construction)

« The method to do this is called subset construction:

NFA: (Qn, =, 8N, No, FN) The alphabet X stays the same

The set of states Qu,
transition function 4y,

start state gno

DFA: (Qp, =, ép, do, Fp) and set of accepting states Fn
are modified

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 7

Subset construction algorithm

‘qo + £-closure({no});
;QD < qo;
‘WorkList « {qo};

‘while (WorkList != @) do
. remove q from WorkList;
for each character ce2 do

t < e-closure(sn(q,c));
5D[qlc] - t;
if t ¢ Qp then

add t to Qp and to WorkList;

: end;
-end;

@ NTNU | sanetandrecnoiogy

Idea of the algorithm:

Find sets of states that are
equivalent (due to ¢-
transitions) and join these to
form states of a DFA

g-closure:

contains a set of states S and
any states in the NFA that can
be reached from one of the
states in S along paths that
contain only e-transitions
(these are identical to a state
in S)

Compiler Construction 04: Lexical analysis in the real world 8

Subset construction example

qu « g-closure({no});
G < qo;
‘WorkList + {qo};

‘while (WorkList != @) do
. remove q from WorkList;
for each character ceX do

t « e-closure(dn(q,c));
sola,c] « t;
if t ¢ Qo then

sy a b ¢

no n1 -— —_—

e - - add t to Qp and to WorkList;
n2 _— _— _— : end; .
N - - - qo < {no} end; _
ns - - - ‘WorkList + {no};

ne — - ny
nz - - -
ng - - -

ng - - -

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 9

Subset construction example

@ NTNU

qu « g-closure({no});
@b < qo;
‘WorkList « {qo};

‘while (WorkList != @) do
. remove q from WorkList;
for each character ceX do

t « e-closure(én(qg,c));

‘while-loop Iteration 1 » solq,c] « t;

‘WorkList « {{no}}; 1 if t ¢ Gp then .
q N rl10;l add t to Qo and to WorkList;
c & ‘a: © . end; :
.t « g-closure(dn(q,c)) Eend;

g-closure(sn(no,‘'a'))
g-closure(ni) '

{nl,nz,n3,n4,n6.n9}

ép[no, ‘a']+{n1,n2,n3,ns,ne,n9};

Qp <—{{no},{nl,nz,n3,n4,n6,n9}};

WorkList ¢

{{n1,n2,n3,n4,n¢,n9}};

Norwegian University of

Science and Technology Compiler Construction 04: Lexical analysis in the real world 10

Subset construction example

:qo + &-closure({no});
G < qo;
‘WorkList + {qo};

‘while (WorkList != @) do
. remove q from WorkList;
for each character ceX do

t < e-closure(dn(q,c));

ow a b c Ewhile—loop Iteration 1: solg,c] « t;
e - - § . ¢ if t ¢ @ then :
.- MWorkList < {no}; F | add t to Gp and to WorkList; :
nz - - - 1q © Noj . end; :
. - - _ ic '‘b','c': Eend;

t « {} L
nid — ns - no change to Gy, Worklist s
ns — — -— e DU :
ne - - ny
nz - - -

ng — - -

ng - - -

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 11

Subset construction example

'qo « e-closure({no});
G < qo;
‘WorkList + {qo};

‘while (WorkList != @) do
. remove q from WorkList;
for each character ceX do

t « e-closure(dn(q,c));

Ewhile—loop Iteration 2 solg,c] « t;
no ni - - ‘WorkList = {{ni,nz,n3,ns,ne,no}}; : if t ¢ Q@ then _
- - - :q < {n1,nz,n3,n4, N6, N0} | add t to Gp and to WorkList; :
-_ B e & 'b': end; :
- S I t « e-closure(don(qg,c)) . ‘end; :
- — ns -— = g-closure(dn(q,'b"))

: e-closure(ns)

- — ny {ns,ng,ng, N3, N4, N6 }

- olqg, ‘b’ 1< {ns,ns,n9,n3,Ns,Ne};

Qp <—{{no},{nl,nz,n3,n4,n6,n9},
{ns,ng,n9,nz,ns,ne}};

WorkList ¢

{{ns,ns,ng,nz,ns,N6}};

NTINU | Soonegan ey o Compiler Construction 04: Lexical analysis in the real world 12

Subset construction example

:qo + &-closure({no});
G < qo;
‘WorkList + {qo};

‘while (WorkList != @) do
. remove q from WorkList;
for each character ceX do

t « e-closure(dn(q,c));

Science and 'I"ech'riéfdg'y """"""" ompHer

‘while-loop Iteration 2 : | solg,c] « t;

‘WorkList = {{n1,nz,nz,nu,ne,no}}; 1 §f ¢ ¢ @ then

q {n1,n2,n3,n4,n6,n0}; ' add t to Qp and to WorkList;
c & Tt © 1 end;

© t « g-closure(dn(qg,c)) . end;

g-closure(on(qg,'c’))

e-closure(n;)

{n7,n8,n9,n3,na.n6}

oolq, ‘¢’ 1+<{n7,ng,n9,N3,N4,N6};

Qp <—{{no},{nl,nz,n3,n4,n6,n9},
{ns,ns,ng,nz,n4, N6},
{n7,ns,n9,N3,N4,N6}};

WorkList ¢«

{{n7,n8,n9,n NuyNe}} s
donstructlon 04 Lexical analysis in the real world 13

Subset construction example

NTNU |

nz

nsnNo

N4,Ne

ns

nsnNo

:qo + &-closure({no});
G < qo;
‘WorkList + {qo};

‘while (WorkList != @) do
. remove q from WorkList;
for each character ceX do

t < e-closure(dn(q,c));

‘while-loop Iteration 3 alasel © t

‘WorkList = {{n7,ng,no,ns,nu,ne}}; ' if t ¢ @y then :

q < {n7,ng,n9,Nn3,Nn4,N6}; | add t to Qp and to WorkList; :

e e L ena; =
t « e-closure(dn(q,c)) . end;

g-closure(on(g,'c’))

: = &-closure(ns,n7) :
:// we ran around the graph once! :

Norwegian University of

Science and Technology Compiler Construction 04: Lexical analysis in the real world 14

no n1 -— =

Set DFA NFA s-closure(éN(q,*))
. - - - name states states
n, — - - a b c
ni, N2, N3
n3 _ _ - d n { J J J — —
Qo 0 0 Ny, ne, ng}
ng — ns -— g d; { n1, n2, n3, _ { ns,ng,ng, { N7, ng, Ny,
ns — - - N4, Ne, N9 } N3, N4, Né } N3, N4, Ne }
{ ns, ng, Ny,
q ns, N4, ns} q9 9
nz - - - { n7, ng, Ny,
3 ds - q:2 q3
ngs - - _ q ns, Na, ne}

ng — - -

@ NTNU | ygg;vggfgdUT“;gﬁ;ﬂt,ggj Compiler Construction 04: Lexical analysis in the real world 15

Subset construction: result

Our NFA for a(b|c)*:

-

subset
construction
algorithm
1 b
o)
(4"
> —

still bigger than b,c
a /\
o - —>

constructed DFA minimal DFA

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 16

« DFAs resulting from subset construction can have a large set of
states

* This does not increase the time needed to scan a string
» It does increase the size of the recognizer in memory

« On modern computers, the speed of memory accesses often
governs the speed of computation

« A smaller recognizer may fit better into the processor’s cache
memory

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 17

Minimization of DFAs

a _>
- — 0

(states renumbered)
 We need a technique to detect when two states are equivalent
* i.e. when they produce the same behavior on any input string
* Hopcroft's algorithm [3]

« finds equivalence classes of DFA states based on their
behavior

« from equivalence classes we can construct a minimal DFA
« We just give an intuitive overview, for details see [4], ch. 2.4.4

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 18

Hopcroft’s algorithm [3]

.

e ldea:

« Two DFA states are equivalent if it's impossible to tell from
accepting/rejecting behavior alone which of them the DFA is in

* For each language, the minimum DFA accepting that language
has no equivalent states

« Hopcroft's algorithm works by computing the equivalence classes of
the states of the unminimized DFA

« The nub of this computation is an iteration where, at each step, we
have a partition of the states that is coarser than equivalence (i.e.,
equivalent states always belong to the same set of the partition)

© N'TINU | Sonwegian University of Compiler Construction 04: Lexical analysis in the real world 19

Science and Technology

Hopcroft’'s algorithm

1. The initial partition is accepting states and rejecting states.
Clearly these are not equivalent

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 20

Hopcroft’'s algorithm

2. Suppose that we have states g1 and g2 in the same set of the
current partition:

If there exists a symbol s such that 6(q1, s) and 6(g2, s) are in
different sets of the partition, then these states are not equivalent

= split set of states into subsets of equivalent states

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 21

Hopcroft’s algorlthm

3. When Step 2 is no longer possible, we have arrived at the true
equivalence classes

For our simple example, step 2 was never applicable, so the two
partitions define the states of the minimized DFA

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 22

Hopcroft’s algorithm: example

(states renumbered)

 DFAto detect (fee | fie)
* s3and ssobviously (?) serve the same purpose

Step Cur!'gnt Examines
Partition Set Char Action
0 {{s3,s5},{s0,s1,s2,54}} — — —
1 {{s3,s5},{s0,s1,s2,s4}} {s3, s5} all none
2 {{s3,s5},{s0,s1,s2,54}} {s0O,s1,s2,s4} e split{s2,s4}
3 {{s3,s5},{s0,s1},{s2,54}} {s0,s1} f split{s1}
4 {{s3,s5},{s0},{s1},{s2,54}} all all none

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 23

More intuitive DFA minimization
a

Myhill-Nerode Theorem [5] /\ a

("Table Filling Method") e

* Another algorithm to minimize DFAs -
(with a bit higher computational

complexity than Hopcroft's)

...but maybe easier to understand?
1%

1. Draw a table for all pairs of
DFA states, leave the half above

(or below) the diagonal empty, S1
including the diagonal itself S2
2. Mark all pairs (p, q) of states S3
where peF and qgF or vice versa S4

(here: all pairs where porq =85) ~——p s, x x x x
= similar to Hopcroft's first partitioning

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 24

Myhill-Nerode DFA minimization #1

3. If there are any unmarked pairs /\
(p, q) such that [6(p, x),6(q, X)] is
marked, then mark [p, q] (here ‘X’
IS an arbitrary input symbol)

— repeat this until no more
markings can be made

(s2,81), x=a (s2,81). x=b (s3,51). Xx=a (s3,S1), Xx=b
(s2,@)=s2 (Sa,b)=ss (sza)=s2 (S3b)=s3 S1 S22 S3 S4 S5
(sr,@)=s2 (s1,b)=s3 (s1,@a)=s2 (s1,b)=s3

(s3,82), x=a (s3,82). Xx=b (s4,S1). Xx=a (S4S1), X=b S2

(ss,a)=s2 (Ssb)=s3 (sga)=s2 (Ss,b)=s5 @

(s2,@) = s2 (s2,b) = 4 (s7,a) = s2 (s1,b) = s2 ~.S3

(S4,82), Xx=a (S4,S2). Xx=b (s4,83). Xx=a (S4,S3), Xx=b Sq4 } » X X

(s4,2) =S (s4,b)=s (s4,@) =S (s4,b)=s |
(s;,a) - s (SZ,b) s (si,a) e 4, ; /Ssif/X. X X

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 25

Myhill-Nerode DFA minimization #2

3. If there are any unmarked pairs /\
(p, q) such that [6(p, X),6(q, x)] is
marked, then mark [p, q] (here ‘X’

IS an arbitrary input symbol)

— before the second iteration, only

(Sz,S1),(S3,S1),iS3,Sz) are unmarked
(s2.51). x=a (s2.51), x=b =a (s3,81), x=b

(s2,a) = s2 (s2,b) = s4 (s3,a) = s2
(s1,@) = S2 (s1,b) = (s1,@) = s2

(s3,82), x=a (s3,S2
(s3,a) = S2 (s3,b) = s3
(s2,@) = s2 (S2,b) = 84

(S4,S7),x=¢
(s4,@) = s2 "
(s,@)=s2 (s1,b)=s2 S3 = X

(S4,82), Xx=a (S4,S2). Xx=b (s4,83). Xx=a (S4,S3), Xx=b S4 X X X
(s,@)=S2 (S4,b)=s5 (S4a)=s2 (S4,b)=ss5
(sz,@)=82 (szb)=ss4 (ssa)=s2 (s3b)=s3 S5 X) 4 X) 4

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 26

Myhill-Nerode DFA minimization

a
The only unmarked combination now /\
is (s3,51). Both have identical subsequent
states for inputs 'a' and 'b' = no marking

4. The remaining unmarked
combinations of states can be
combined: here, only (s3,81) — s1,3

S1 S2 S3 S4 S5
S1
S2 1 X
S3
S4
S5

X X X

) 4
) 4

X X

minimized DFA

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 27

A real-world scanner generator: lex

* Invented in 1975 for Unix [1]
« today, GNU variant “flex” is still often used

« Takes a regexp-like input file and outputs a DFA implemented in C
 using current flex: ~1700-1800 lines of code
« using 7th edition Unix from 1979: 300 lines...

« Similar tools exist for Java (JFlex), Python (PLY), C# (C# Flex),
Haskell (Alex), Eiffel (gelex), go

input file.l * - * lex.yy.c

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 28

xecutable program ("a.out")
implementing the
lexical analyzer

Lex specifications

Lex files are suffixed *.1 , and contain 3 sections:

.<declarations>

%%

.<translation rules>
%%

§<functions>

» Declaration and function sections can contain regular C
code that makes its way into the final product

« Translation rules are compiled into a function called yylex()

 The outputis a C file

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 29

LeX deCIarations §<dec1arations>

%%
. L ‘<translation rules>
* The declaration section is used to o

include C code (header includes, <functions>
declarations of global variables or
function prototypes) enclosed in “%{* and “}%"

and can also be used to add directives “% ...” for lex

« The functions section is plain C code (your support function
and the main function)

* The translation rules are regular expressions paired with
basic blocks (actions, written as C code fragments) related
to the pattern

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 30

A simple example

:<declarations>
- %%

‘<translation rules>

* Alex file that detects some regexps 5%
without any attached code:

- %o

A AVANAA
if

Ethen
Eendif

:end

example0.1 E

.<functions>

..

'$ lex example0.1l

4 lex.yy.c was generated

'$ 1s

-example0.1 lex.yy.c

:# compile and link lex library
:$ cc -0 example0 lex.yy.c -11

« This is not very useful, but it compiles...

@ NTNU

Norwegian University of
Science and Technology

Compiler Construction 04: Lexical analysis in the real world 31

Some aCtion! §<dec1arations>

%%
_ ‘<translation rules>

 \We can add actions to each of the ooy

regexps. -<functions>

gii .. ——

[\m\t\v\] { /* Do nothing, this is whitespace */ }

if { return IF; }

- then { return THEN; }

-endif { return ENDIF; }

‘end { return END; }

[0-9]+ { return INT; }

« We need a bit of infrastructure to make this a useful scanner

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 32

Add tOken definitions §<dec1arations>

- oo

. . ‘<translation rules>
« Each token is assigned a number 99,

(starting at O if nothing is specified):

4<functions>

%
:#include <stdio.h>&
‘enum { IF, THEN, ENDIF, INT, END };

examplel.l

%}

[\n\t\W\] { /* Do nothing, this is whitespace */ }
if { return IF; }

- then { return THEN; }

‘endif { return ENDIF; }

-end { return END; }

-[0-9]+ { return INT; }

E°/°°°

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 33

Building a complete program;geclarauons>

.<translation rules>
* We need a main function that repeatedly ooy

calls the generated scanner function yylex(): :<functions>

.<previous declarations>

%%

.<previous regexps and actions>

%%

-int main (void) {

int token = 0;

while (token != END) {

token = yylex(); a

switch (token) {
case IF: printf ("Found if\n"); break;
case THEN: printf ("Found then\n"); break;
case ENDIF: printf (“"Found endif\n"); break; g
case INT: printf ("Found integer %s\n", yytext); break;
case END: printf ("Hanging up... bye\n"); break;

examplel.l

N
@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 34

Lex can run standalone

« If you need a simple scanner, you can run lex without a
parser

 The example code is online, try it out!

:S lex examplel.l
:# lex.yy.c was dgenerated

'S 1s

examplel.l lex.yy.c

:# compile and link lex library
:S cc -o examplel lex.yy.c -11
:# now run the scanner
:S ./examplel

:if 1 then 42 endif end
:Found if

:Found integer 1

:Found then

:Found integer 42 4&””MwWﬂw”
:Found endif

:Hanging up... bye

'S

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 35

Introducing states and hierarchy

* Lex enables you to define hierarchy using states

* the states denote sub-automata

* e.g. useful for detecting "strings inside double quotes”
* Putting the statement

In the declarations section declares a state named STRING
* You can then specify states in the regexps

need 1o
<INITIAL>\ e qu ‘:us\ﬂga\

<STRING>\ D W Dbe o5caPe

These two specify the start and end of a string, respectively
(<INITIAL> is implicitly defined)

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 36

[any character]

Switching between states @

 Actions allow to switch
between states >

[other rules]

§<INITIAL>if { printf ("Found 'if'\n"); }
:<INITIAL>end { printf ("Found 'end'\n"); return 0; } ¥

'<STRING>\" { printf
. <STRING>. { printf

"\n"); BEGIN(INITIAL); }
"%c,", yytext[0]);]

(

_ (

. <INITIAL>\" { printf ("Found string: "); BEGIN(STRING); }
(
(

Lex matches regexps from top
to bottom, so <STRING>\" has
precedence before <STRING>.

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 37

Greedy automata

 When there are multiple accepting states, the DFA simulation
cannot guess whether to take the first match, or continue in the
hope of finding another

[0-9] [0-9]

A

[0-9] '/\
123.456789 Q

« Common rule it that the longest match "wins" and the input-
recording buffer rolls back if input leads the DFA astray

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 38

Summary

« Lexical analysis (scanning) is required to find simple text
patterns

« expressed as a regular language
* Implementable as NFAs and DFAs

* Equivalent representations can be constructed
 We can describe scanners as

* graphs

» tables

* regular expressions (regexps)

« Scanner generators help to turn regexps into C code for a
scanner

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 39

References

[1] M. E. Lesk and E. Schmidt:
Lex-A Lexical Analyzer Generator

in UNIX Programmer’s Manual, Seventh Edition, Volume 2B,
Bell Laboratories Murray Hill, NJ, 1975 (the Unix standard scanner generator)

[2] Peter Bumbulis and Donald D. Cowan:
RE2C: a more versatile scanner generator

ACM Letters on Programming Languages and Systems. 2 (1-4), 1993
github.com/skvadrik/re2¢/ (this one can handle Unicode input)

[3] John Hopcroft:
An n log n algorithm for minimizing states in a finite automaton

Theory of machines and computations (Proc. Internat. Sympos, Technion, Haifa), 1971,
New York: Academic Press, pp. 189-196, MR 0403320

[4] Keith Cooper and Linda Torczon:

Engineering a Compiler (Second Edition)

ISBN 9780120884780 (hardcover), 9780080916613 (ebook)
[5] Nerode, Anil:

Linear Automaton Transformations
Proceedings of the AMS, 9, JSTOR 2033204, 1958

@ NTNU | S oy Compiler Construction 04: Lexical analysis in the real world 40

http://github.com/skvadrik/re2c/

