
Compiler Construction
Lecture 2: Compiler Structure and Lexical Analysis

Michael Engel

Includes material by

Jan Christian Meyer

Compiler Construction 02: Compiler Structure, Scanning 2

Overview
• Overview: definition and tasks of a compiler
• Structure and stages of a typical compiler
• Deterministic finite automata (DFA)
• Lexical analysis (scanning)

Compiler Construction 02: Compiler Structure, Scanning 3

Compilers are everywhere
• Original idea: enable programming of computers in higher-

level abstractions than machine language
– Zuse's Plankalkül (1940s), FORTAN, LISP, A0 (1950s)

• Today:
– Many different source languages and target platforms

• Additional uses of compilers:
– Static analysis and verification

– Hardware synthesis

– Source-to-source transformations

– Just in time (JIT) compilation

Compiler Construction 02: Compiler Structure, Scanning 4

What does a compiler do?
• Compiler:

“Tool that translates software written in one language into
another language”
• must understand both the form, or syntax, and content, or

meaning (semantics), of the input language
• and understand the rules that govern syntax and mean-

ing in the output language
• needs a scheme for mapping content from the source

language to the target language
• Requirements:

• must preserve the meaning of the program being compiled
• must improve the input program in some discernible way

Compiler Construction 02: Compiler Structure, Scanning 5

The compilation process black box

int factorial(int n)
{
 int fact = 1;
 while (n--)
 fact = fact * n;
 return n;
}

. . .
0xE59F1010
0xE59F0008
0xE0815000
0xE59F5008
. . .

?

Compiler Construction 02: Compiler Structure, Scanning 6

Compilation process in detail

source code in
high-level language (.c)

preprocessor

preprocessed code

compiler

assembler code (.s)

assembler

machine (“object”)
code (.o)

linker

executable code

loader

debugger

libraries

Compiler Construction 02: Compiler Structure, Scanning 7

Structure of a compiler (1)

“understand both the form,
or syntax, and content, or
meaning (semantics), of
the input language”

Frontend Backend

Source code Target program

compiler

“understand the rules that
govern syntax and mean-
ing in the output language”

“scheme for mapping
content from the source
language to the target
language”

Compiler Construction 02: Compiler Structure, Scanning 8

Structure of a compiler (2)

“understand both the form,
or syntax, and content, or
meaning (semantics), of
the input language”

Frontend Backend

Source code Target program

compiler

“understand the rules that
govern syntax and mean-
ing in the output language”

“scheme for mapping
content from the source
language to the target
language”

“must improve the input
program in some
discernible way”

Optimizer
IR IR

Compiler Construction 02: Compiler Structure, Scanning 9

Intermediate representation (IR)
• Early compilers directly

generated machine code

• n source languages, m targets:

 n x m compilers required!
• Idea: use a common description

format:“Intermediate Representation” (IR)

– Transform source to IR (front end) and IR to target code (back end):
only n + m compilers required now

• Additional advantages of using intermediate representations:
– Easy to change source or target language
– Easier optimizations: developed only for the intermediate

representation
– Intermediate representation can be directly interpreted

Intermediate representations

Why use an intermediate representation?

It’s easy to change the source or the target language by adapting
only the front-end or back-end (portability)

It makes optimization easier: one needs to write optimization
methods only for the intermediate representation

The intermediate representation can be directly interpreted7.1. INTERMEDIATE REPRESENTATION TREES

Java

ML

Pascal

C

C++

Sparc

MIPS

Pentium

Itanium

Java

ML

Pascal

C

C++

Sparc

MIPS

Pentium

Itanium

IR

FIGURE 7.1. Compilers for five languages and four target machines:
(a) without an IR, (b) with an IR.

7.1 INTERMEDIATE REPRESENTATION TREES

The intermediate representation tree language is defined by the package Tree,
containing abstract classes Stm and Exp and their subclasses, as shown in
Figure 7.2.

A good intermediate representation has several qualities:

• It must be convenient for the semantic analysis phase to produce.
• It must be convenient to translate into real machine language, for all the de-

sired target machines.
• Each construct must have a clear and simple meaning, so that optimizing

transformations that rewrite the intermediate representation can easily be spec-
ified and implemented.

Individual pieces of abstract syntax can be complicated things, such as
array subscripts, procedure calls, and so on. And individual “real machine”
instructions can also have a complicated effect (though this is less true of
modern RISC machines than of earlier architectures). Unfortunately, it is not
always the case that complex pieces of the abstract syntax correspond exactly
to the complex instructions that a machine can execute.

Therefore, the intermediate representation should have individual compo-
nents that describe only extremely simple things: a single fetch, store, add,
move, or jump. Then any “chunky” piece of abstract syntax can be trans-
lated into just the right set of abstract machine instructions; and groups of
abstract machine instructions can be clumped together (perhaps in quite dif-
ferent clumps) to form “real” machine instructions.

137

(Appel)

Intermediate code generation 280

Compiler Construction 02: Compiler Structure, Scanning 10

Stages of a compiler (1)

Lexical analysis (scanning):

– Split source code into lexical units

– Recognize tokens (using regular expressions/automata)

– Token: character sequence relevant to source language grammar

Lexical
analysis

Syntax
analysis

Semantic
analysis

Code
generation

Code
optimization

Source code

character stream

token sequence

machine-level program

x = y + 42 id(x) op(=) id(y) op(+) number(42)

character stream token sequence

Compiler Construction 02: Compiler Structure, Scanning 11

Stages of a compiler (2)

Syntax analysis (parsing)
– Uses grammar of the source language
– Decides if input token sequence can be

derived from the grammar

id(x)

op(=)

id(y)

op(+)

number(42)

Lexical
analysis

Semantic
analysis

Code
generation

Code
optimization

Source code

token sequence

machine-level program

Syntax
analysis

syntax tree

Compiler Construction 02: Compiler Structure, Scanning 12

Stages of a compiler (3)

Semantic analysis

– Name analysis (check def. & scope of symbols)

– Type analysis (check correct type of expressions)

– Creation of symbol tables (map identifiers to their types and positions in the
source code)

Syntax
analysis

Semantic
analysis

syntax tree IR

Lexical
analysis

Code
generation

Code
optimization

Source code

machine-level program

Compiler Construction 02: Compiler Structure, Scanning 13

Stages of a compiler (5)

Code optimization
– Analyzes & applies patterns of redundancy

– e.g., store of a variable followed by a load of it

– Often, different stages/levels of optimization with different intermediate
representations are applied

Code
generation

Code
optimization

IR

Semantic
analysis

Syntax
analysis

Lexical
analysis

Source code

machine-level program

IR

Compiler Construction 02: Compiler Structure, Scanning 14

Stages of a compiler (4)

Code generation
– Determines and outputs equivalent machine instructions

for components of the IR (instruction selection)

– Determines correct instruction order with respect to pipeline constraints,
exploitation of instruction-level parallelism (instruction scheduling)

– Assigns variables to registers (register allocation) and memory locations

Semantic
analysis

Code
generation

IR

Syntax
analysis

Lexical
analysis

Code
optimization

Source code

machine-level program

machine
code

Compiler Construction 02: Compiler Structure, Scanning 15

Lexical analysis (scanning)
• The compiler input is simply a stream (sequence) of bytes:

 72, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100, ...

• By convention, these are mapped to letters, digits, etc.:

 ‘H’, ‘e’, ‘l’, ‘l’, ‘o’, ‘ ‘, ‘w’,’o’,’r’,’l’,’d’, ...

• Other mappings (encodings) exist
• e.g. Unicode UTF-8, EBCDIC

• On this level, the input program is just a lot of bytes without
any structure

Lexical
analysis

ASCII

encod
ing

Compiler Construction 02: Compiler Structure, Scanning 16

Lexical analysis (scanning)
• Naive approach to scanning:
Read letters one by one, e.g., for a key word “while”:

 w (119), h (104), i (105), l (108), e (10)

• Writing a compiler that has to detect this pattern every time
the programmer wants to start a loop is inconvenient:

• A programmer might choose to call a variable 'whilf':

 w (119), h (104), i (105), l (108), (looking good so far…)
 f (10) (oh no, start from scratch, that’s not a loop)

Lexical
analysis

Compiler Construction 02: Compiler Structure, Scanning 17

Identifying syntactical units
• Better approach:
Group letters into meaningful units and operate on those:

 ‘i’, ‘f’, ‘(‘, ‘w’,’h’, ‘i’, ‘l’, ‘f’, ‘=’, ‘=’, ‘2’, ‘)’, ‘{‘, ‘x’, ‘=’, ‘5’, ‘;’, ‘}’

 if (whilf == 2) { x = 5; }

• Here, we use color coding to identify the various units:

keywords and punctuation
delimiters of groups
variables
operators
numbers

Lexical
analysis

Compiler Construction 02: Compiler Structure, Scanning 18

Deriving code structure
• What use is the coloring of our units?

We've already seen this one:
 if (whilf == 2) { x = 5; }

How would we color that line?
 while (a < 42) { a += 2; }

Using the same coloring roles, we get:
 while (a < 42) { a += 2; }

• These two statements have completely different meanings but share the
same (syntactic) structure (here: sequence of colors)

• We’ll talk about structure later
• Today, we will look at lexical analysis

Lexical
analysis

keywords and punctuation
delimiters of groups
variables
operators
numbers

Compiler Construction 02: Compiler Structure, Scanning 19

Useful definitions
• Lexeme

• Lexemes are units of lexical analysis, words
• They’re like entries in the dictionary, “house”, “walk”, “smooth”

• Token
• Tokens are units of syntactic analysis
• They are like units of a sentence, “noun”,“verb”,“adjective”

• Semantic
• The meaning of something (there is no sensible unit)
• Similar to explanations in the dictionary:

• house: “a building which someone inhabits”
• walk: “the act of putting one foot in front of the other”
• smooth: “the property of a surface which offers little resistance

Lexical
analysis

Compiler Construction 02: Compiler Structure, Scanning 20

Classes of lexemes
• Lexemes with a fixed meaning

• keywords or reserved words
• “if", “while”, “for”, “==“, …
• Most languages forbid the use of these as identifiers (variable/

function/… names)
• Source is easier to parse, less ambiguous code

• Classes with countably infinite instances
• e.g. 1, 2, 3, … 65535, …
• All of these are specific cases of the class “integer number"

Lexical
analysis

Compiler Construction 02: Compiler Structure, Scanning 21

Finite automata
• Required:
Mechanism to identify classes of words (not just single words)

• Example: mechanism to recognize real numbers
• Informal description:
“A real number starts with one or more digits optionally followed by a
decimal point followed by zero or more digits”

• Formal approach: Deterministic Finite Automaton (DFA)
• example given as a directed graph here (easy to follow)

s1 s2 s3

[0-9]

[0-9]

'.'

[0-9]

Lexical
analysis

Compiler Construction 02: Compiler Structure, Scanning 22

DFA structure

s1 s2 s3

Nodes (vertices V) = States
(here: s1, s2, s3)

States s2, s3 are
accepting states
(double outline)

Automaton
starts here

Edges E = Transitions
(annotated with conditions)

DFAs are often represented as directed graph G = (V, E)

[0-9]

[0-9]

'.'

[0-9]

Lexical
analysis

Compiler Construction 02: Compiler Structure, Scanning 23

DFA formal definition
Formal definition: DFA = 5-tuple (Q, Σ, δ, q0, F)
Q is a finite set called the states,
Σ is a finite set called the alphabet,
δ: Q×Σ → Q is the transition function,
q0 ∈ Q is the start state, and
F ⊆ Q is the set of accepting states

s1 s2 s3

[0-9]

[0-9]

'.'

[0-9] Q = {s1, s2, s3}
Σ = {0,1,2,3,4,5,6,7,8,9,.}
q0 = s1
F = {s2, s3}
δ = ???

Lexical
analysis

s2

Compiler Construction 02: Compiler Structure, Scanning 24

Transition function of a DFA
Give the subsequent state for each state and each possible
input, commonly as a table:

δ 0 1 2 3 4 5 6 7 8 9 .
s1 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2

s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s3

s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3

input character

cu
rr

en
t

st
at

e

s1 s2 s3

[0-9]

[0-9]

'.'

[0-9]

Lexical
analysis

Q = {s1, s2, s3}
Σ = {0,1,2,3,4,5,6,7,8,9,.}
q0 = s1
F = {s2, s3}
δ = ???

Compiler Construction 02: Compiler Structure, Scanning 25

Example DFA transition

s1 s2 s3
[0-9]

[0-9]

'.'

[0-9]

δ 0 1 2 3 4 5 6 7 8 9 .
s1 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2

s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s3

s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3

Input character sequence:
4 2 . 2 3

Read 1st char: '4' ➙ change to s2

Start: in state s1

Read 2nd char: '2' ➙ stay in s2

Read 3rd char: '.' ➙ change to s3

Read 4th char: '2' ➙ stay in s3

Read 5th char: '3' ➙ stay in s3

End of sequence in accepting state ✔

Lexical
analysis

Compiler Construction 02: Compiler Structure, Scanning 26

Error handling
• What happens when a character '.' is read in state s1 or s3?

δ 0 1 2 3 4 5 6 7 8 9 .
s1 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 ???
s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s3

s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 ???

s1 s2 s3

[0-9]

[0-9]

'.'

[0-9]

Error
'.' '.'

The error state is
often omitted in DFA
descriptions.

Implied: all non indicated
characters ➙ error

Lexical
analysis

Compiler Construction 02: Compiler Structure, Scanning 27

Implementing a DFA in C the hard way
enum {error = 0, success};

int scan_real_number(void) {
 char c;
 enum states = {s1, s2, s3};
 enum states cur = s1;
 while (1) {
 c = getchar(); // get next char
 if (c==EOF) break; // end?
 switch(cur) {
 case s1:
 if (c>='0' && c<='9')
 cur = s2;
 else return error;
 break;
 case s2:
 if (c>='0' && c<='9')
 cur = s2;
 else if (c=='.')
 cur = s3;
 else return error;
 break;

s1 s2 s3

[0-9]

[0-9]

'.'

[0-9]

Error
'.' '.'

 case s3:
 if (c>='0' && c<='9')
 cur = s3;
 else return error;
 break;
 } // switch
 } // while
 // check for accepting state
 if (cur != s2 && cur != s3) return error;
 else return success;
}

Compiler Construction 02: Compiler Structure, Scanning 28

Implementing a table-driven DFA in C
enum {error = 0, success};
enum states {s1, s2, s3, er};
enum states cur = s1;
char alphabet[] = { '0', '1', '2', '3', '4',
 '5', '6', '7', '8', '9', '.' };

// next state for each char in alphabet (columns)
struct scanner {
 enum states next[sizeof(alphabet)];
};

// rows of the transition table
struct scanner delta[sizeof(enum states)] = {
// 0 1 2 3 4 5 6 7 8 9 .
 {s2, s2, s2, s2, s2, s2, s2, s2, s2, s2, er}, // s1
 {s2, s2, s2, s2, s2, s2, s2, s2, s2, s2, s3}, // s2
 {s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, er}, // s3
 {er, er, er, er, er, er, er, er, er, er, er}, // er
};

int scan_real_number(void) {
 char c;
 while (1) {
 c = getchar(); // get next char
 if (c==EOF) break; // end?
 cur = delta[cur].next[lookup(c)];
 } // while
 // check for accepting state
 if (cur!=s2 && cur!=s3)
 return error;
 else return success;
}

δ 0 1 2 3 4 5 6 7 8 9 .
s1 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 er
s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s2 s3

s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 s3 er

What is the task of the function

call looku
p(c) here and how

would you implement it?

Beware: there's a subtle but

potentially dangerous bug

in the code! Can you find it?

Compiler Construction 02: Compiler Structure, Scanning 29

Scanner generators
• Programming a word-class recognizer (lexical analyzer, or
scanner) with ad-hoc logic is complicated and error-prone

• Writing one using tables is a bit easier, but it requires
punching in a bunch of boring table entries to represent
specific DFAs

• Can we generate code for a scanner automatically from a
simple description?

• Specify word classes as regular expressions
• Let a program write a large table of states that includes all
of the expressions

• More on this next week!

