
C "crash course"
TDT4186 – Operating Systems

TDT4205 – Compiler Construction

Spring semester 2021
Michael Engel

C “crash course” 2

C Crash Course
● Idea:

● Set a common knowledge foundation for all students
● Show important differences between Java and C programming and/

or refresh your knowledge of C programming

● Why do we use C?
● Provides abstractions of the machine on a high level, not

abstractions of your problems (but see [1])
● Useful for us, we want to build our own abstractions

● What’s the problem with C?
● Compiler construction revolved around string processing (scanning)

and data structures (lists, trees, hash tables) – things not easy to use
or unavailable in plain C

[1] David Chisnall, “C is not a low-level language”, ACM Queue Volume 16, issue 2 (2018) 
 https://queue.acm.org/detail.cfm?id=3212479

https://queue.acm.org/detail.cfm?id=3212479
https://queue.acm.org/detail.cfm?id=3212479

C “crash course” 3

What you should be familiar with
● Using a plain text editor
● Storing the editor file on a system running some sort of Unix

● this includes WSL on Windows 10 (the “Windows Subsystem for
Linux” [2]), and Mac OS X and, of course, Linux, *BSD, …

● Logging in to some Unix-like system and use a standard
Unix shell such as bash

● Creating, editing and using makefiles and make

● This is easy to learn
● but maybe feels quite strange for students coming from Windows/

Java and only used to IDEs and automatic project management

[2] https://docs.microsoft.com/en-us/windows/wsl/install-win10

C “crash course” 4

Getting started
● If you don't have a convenient system handy, you can use the system

at login.stud.ntnu.no (I haven’t tried this myself so far…) 

● You can have SSH shells from windows, tiny program download  
from http://www.putty.org/  

● You can transfer files through SAMBA (“map network drive”), or edit
them directly through the shell ('nano' is a pretty humane screen-editor
available on login.stud, documentation at http://www.nano-editor.org/)  

● None of this is particularly hard, but it isn't perfectly intuitive to
everyone the first time  

● If you can't find your way, ask. Installing a 100 megabytes of colorful
buttons will not solve the problem 
 
If you can find your way, feel free to use whatever IDE you know and
love, but don't rely on it being there

C “crash course” 5

Programming Paradigms
● Imperative programming

● Program = sequence of commands
● Procedural programming

● Special case of imperative programming
● Program = set of procedures (functions) operating on common data

● Object oriented (OO) programming
● Encapsulation of code and data in objects
● Program: set of object interacting via interfaces 
 
→ usually: “OO language” = imperative programming + OO extension 

● Very different: declarative programming (functional, rule
oriented...) 

C “crash course” 6

Programming Paradigms (2)
● A programming language can be suitable for a given

paradigm.
● However, the language does not enforce the use of this

paradigm or preclude the use of other paradigms
● Examples

● Procedural programming in Java (god object, big hairy object)
● Non-procedural imperative programming in C (god function)
● Object oriented programming in C

C “crash course” 7

Java vs C
● hello_world.java class Hello {

public static void main(String argv[]) {
System.out.println(“Hello world!”);

}
};

● hello_world.c 
 
 
 
 

● printf() is not part of the language, rather of the standard library
● main() is not part of a class (since C does not support classes)
● main() requires a return parameter: program exit code

#include <stdio.h>

int main() {
printf(“Hello world!\n”);
return 0;

}

C “crash course” 8

Structure of C programs
#include <stdio.h>

int counter;

int gcd(int a, int b) {
 counter++;
 if (a==0) return b;
 if (b==0) return a;
 return gcd(b,a%b);
}

int main(int argc, char **argv) {
int eastwood=10164;
char ly=240;
printf(“result: %d\n”, gcd(ly,eastwood));
printf(“function calls needed: %d\n”, counter);
return 0;

}

global variable
definitions
and functions

local variables at the
beginning of a function
or block

● main() function
● Entrance point for C programs, can be passed parameters
● Return value gives exit code of the program (in Unix shell: “$?”)

C “crash course” 9

Output using printf

#include <stdio.h>

int main() {
int eastwood = 4711;
printf(“A number: %d\nNow in hexadecimal: %x”, -815, eastwood);
return 0;

}

● Make printf „known“ to the compiler: 
#include <stdio.h>

● First parameter: format string: 
“A number: %d\nNow in hexadecimal: %x“

● Contains placeholders for additional parameters
● decimal (signed): %d (unsigned: %u)
● hexadecimal: %x
● many more listed in the printf man page

C “crash course” 10

Functions
● “Classless methods”
● Elementary building blocks which enable modularized

imperative programs
● Functions reduce the complexity by partitioning complex problems into

manageable parts
● Reusable program components
● Hiding of implementation details

● Functions vs. methods
● Functions are declared and defined in the global scope
● ...are not part of a class
● ...do not provide this

C “crash course” 11

Function Declarations and Definitions
● Functions should be 

declared before  
they are used (called): 
 
 
 
 
 

● Forward declaration tells the compiler that bar exists when it
compiles foo
● Otherwise, the compiler assumes that bar‘s return value is of type int

(implicit declaration) and disables type checking of parameters 
 → bad style, causes compiler warning

● Historical background: one-pass compilers

void bar(int); /* declaration */

void foo(int b) {
if (b<0) return;
bar(b-1);

}

void bar(int a) { /* definition */
if (a<0) return;
foo(a-1);

}

C “crash course” 12

Function – Swapping Variable Contents
● Java

● simple data types: call by value
● Object types: call by reference 

● C
● (technically) only call by value
● (call by reference is possible by using  

pointers)

#include <stdio.h>

foo(int a) {
a++;

}

int main() {
int a=5;
foo(a);
printf(“%d”,a);
return 0;

}

What is the output  
of this program?

C “crash course” 13

Control Structures
● In C: same as in in Java
• if (condition) {...} else {...}

• while (condition) {...}

• do {...} while (condition);

• for(...; condition;...) {...}

• switch (...) {case ...: ...}

• continue; break;

● Only difference :  
condition is integer number (not a boolean)

C “crash course” 14

Standard Types
● Simple data types similar to Java

● char character (ASCII code), 8 bits
● int integer number, 32 bits *
● float floating point number (32 bits)
● double double precision floating point number (64 bits)
● void without a value

● Additional modifiers:
● signed, unsigned, short and long

● Type boolean did not exist in old C (only in C99: bool)
● Boolean expressions evaluate to 0 (false) or 1 (true)
● Integers can be used in place of Boolean variables

print(“%d”, 4711 > 42); /* prints 1 */
while (1) {} /* endless loop */

* depends on the architecture (length of a machine word)!

C “crash course” 15

Structures (structs)
● There are no classes in C
● However, there are complex data types (structs)
● “classes without methods” struct student {

 int student_id;
 int age;
 char name[64];
};

void rejuvenate(struct student
s) {

s.age = 0;
}

void foo() {
 struct student s1;
 s1.age = 20;
 rejuvenate(s1);
}

Why does this instruction
not cause an exception ?

● struct parameters  
are also passed  
by value!

What is the age of
s1 here?

C “crash course” 16

Operators (1)
● Mostly identical in C and Java

() [] ++ --  

++ -- + - ! ~  

* / %  

+ -  

<< >>  

< <= > >=  

== !=  

&  

^  

|  

&&  

||  

?:  

= += -= *= /= %= &= ^= |= <<= >>=

method or
function call

predecrement

postincrement

unary
negation

C “crash course” 17

Operators (2)
● There are a number of differences

. () [] ++ -- ->  

(t) ++ -- + - ! ~ * & sizeof  

* / %  

+ -  

<< >>  

< <= > >=  

== !=  

&  

^  

|  

&&  

||  

?:  

= += -= *= /= %= &= ^= |= <<= >>=

also in Java, but with
different semantics!

only in C

C “crash course” 18

Operators (3)
● Access to members of an object

● Access to method or member variable of an objects in Java
● C does not provide objects with related methods

● (t) cast to type t

● Automatically checked for validity in in Java
● in C: value in memory gets interpreted as Type t  
 

● & address operator
● Returns the address of a variable in memory

● *, -> and sizeof are discussed later

int eastwood=0xD431;
char ly = (char) eastwood; /* ly contains 49 now, why? */

C “crash course” 19

Variables
● Always have to be initialized (as in Java)

● Otherwise, their value is undefined
● Initialization can be combined with declaration

● Can have global  
or local scope int counter=0;

int gcd(int a, int b) {
 counter++;
 if (a==0) return b;
 if (b==0) return a;
 return gcd(b,a%b);
}

int main() {
int eastwood=10164;
char ly=240;
printf(“result: %d\n”, gcd(ly,eastwood));
printf(“function calls needed: %d\n”, counter);
return 0;

}

global

local

also
local

C “crash course” 20

Global Variables
● Defined outside of functions
● Accessible in the program below the line of their definition
● Can be overlayed by local variables 

● Problems
● Missing context: relation between data objects and code using these

objects is not visible
● Functions can change variables at any time without the function‘s

caller noticing/expection it (side effects)
● More difficult program maintenance 

  
 → avoid global variables whenever possible!

C “crash course” 21

Local Variables
● Declared inside and at the start of a

function or blocks
● Are not accessible outside of that

function or block
● Overlays (covers) all previous

definitions of an object with the same
name; these are not accessible inside
of the block! 

● Which value is returned by main() in
the example?

int a=0, b=1;

void bar(int b) {
a=b;

}

void foo(int a, int b)
{
 {

int b=a;
int a=a+b;

}
bar(a);

}

int main() {
int b=a;
{

int a=2;
foo(a,b);

}
return a;

}

C “crash course” 22

What Do We Know So Far...
● Things not available in C:

● classes
● Exceptions
● public, private and protected qualifiers
● new and garbage collection
● import

● Single line comments using // => valid in C99

● Other things available in C (so far):
● functions
● global variables
● #include

C “crash course” 23

C keywords

auto break case char
const continue default do

double else enum extern

float for goto if

int long register return

short signed sizeof static

struct switch typedef union

unsigned void volatile while

C “crash course” 24

Program Memory Layout

data

codeText Segment
(program code)

Block Storage Segment
(uninitialised data)

Data Segment
(initialised data)

Heap

Stack

low addresses

high addresses● Global variables are stored in
the BSS or data segment

● Local variables are stored on
the stack
● Created when related function is

entered
● Part of a function‘s stack frame
● Removed from stack when function

returns
● Heap: dynamic variables

● in Java: created using new
● in C: later... (keywords: pointer,
malloc())

C “crash course” 25

Memory Layout (2)
#include <stdio.h>
int global_uninitialized;
int global_initialized=4711;

void uboot() {}

int main() {
 int local;
 printf(“%p\n%p\n%p\n%p\n”,
 &global_uninitialized,
 &global_initialized,
 &uboot,
 &local);

return 0;
}

$ gcc mem.c -o mem.elf
$ nm mem.elf -r -n
080495a8 A _end
080495a4 B global_uninitialized
080495a0 b completed.5843
080495a0 A _edata
080495a0 A __bss_start
0804959c D global_initialized
08049598 d p.5841
08049594 D __dso_handle
08049590 W data_start
08049590 D __data_start
08049578 d _GLOBAL_OFFSET_TABLE_
080494a4 d _DYNAMIC
080494a0 d __JCR_LIST__
080494a0 d __JCR_END__
0804949c d __DTOR_END__
08049498 d __DTOR_LIST__
08049494 d __CTOR_END__
08049490 d __init_array_start
08049490 d __init_array_end
08049490 d __CTOR_LIST__
0804848c r __FRAME_END__
0804847c R _IO_stdin_used
08048478 R _fp_hw
0804845c T _fini
08048430 t __do_global_ctors_aux
0804842a T __i686.get_pc_thunk.bx
080483d0 T __libc_csu_init
080483c0 T __libc_csu_fini
08048379 T main
08048374 T uboot
08048350 t frame_dummy
08048320 t __do_global_dtors_aux
080482f0 T _start
08048278 T _init
 U printf@@GLIBC_2.0
 U __libc_start_main@@GLIBC_2.0

● Why is variable local not shown  
in the list on the right?

C “crash course” 26

Memory Layout (3)
#include <stdio.h>
int global_uninitialized;
int global_initialized=4711;

void uboot() {}

int main() {
 int local;
 printf(“%p\n%p\n%p\n%p\n”,
 &global_uninitialized,
 &global_initialized,
 &uboot,
 &local);

return 0;
}

$ gcc mem.c -o mem.elf
$ nm mem.elf -r -n
080495a8 A _end
080495a4 B global_uninitialized
080495a0 b completed.5843
080495a0 A _edata
080495a0 A __bss_start
0804959c D global_initialized
08049598 d p.5841
08049594 D __dso_handle
08049590 W data_start
08049590 D __data_start
08049578 d _GLOBAL_OFFSET_TABLE_
080494a4 d _DYNAMIC
080494a0 d __JCR_LIST__
080494a0 d __JCR_END__
0804949c d __DTOR_END__
08049498 d __DTOR_LIST__
08049494 d __CTOR_END__
08049490 d __init_array_start
08049490 d __init_array_end
08049490 d __CTOR_LIST__
0804848c r __FRAME_END__
0804847c R _IO_stdin_used
08048478 R _fp_hw
0804845c T _fini
08048430 t __do_global_ctors_aux
0804842a T __i686.get_pc_thunk.bx
080483d0 T __libc_csu_init
080483c0 T __libc_csu_fini
08048379 T main
08048374 T uboot
08048350 t frame_dummy
08048320 t __do_global_dtors_aux
080482f0 T _start
08048278 T _init
 U printf@@GLIBC_2.0
 U __libc_start_main@@GLIBC_2.0

$./mem.elf
0x80495a4
0x804959c
0x8048374
0xffe62a80

C “crash course” 27

Pointer (variables)

● Variables have an address in memory 

● The address can in turn be stored in another variable: 
 
 

● Variable: name for a data object  
 

● Pointer variable (pointer):  
name for a reference to a data object

int eastwood = 4711;
int *p;
p = &eastwood; /* p “points” to “eastwood” now */

4711eastwood

4711eastwood

p

C “crash course” 28

Pointers (2)
● A pointer variable (pointer) stored the address of another

variable: it points to that variable
● This address enables indirect access to the variable
● Commonly used in C code:

● Functions can be are enabled to modify their parameters (resp. the
objects these parameters point to), this is the way to implement call by
reference in C!

● Dynamic memory allocation and management
● More efficient programs

● Disadvantages…
● Program structure is less clear (which function can access which

variables?)
● Most common source of errors in C programs

C “crash course” 29

Pointers (3)

● Syntax to create a pointer variable: 
Type *Name;

● Example: 
 
 
 
 

● Address operator &  
&x returns the address of variable x

● Dereference operator *  
*x enables access to the content of the variable x points to

int eastwood = 4711;
int *p;
int x;

p = &eastwood; /* p “points” to eastwood now */

x = *p; /* copies the object p points to into x */

C “crash course” 30

Pointers as Function Parameters
● Parameters are always passed by value in C (i.e., copied)
● A function can never modify the value of one of its

parameters in the context of the calling function!
● Pointers are also passed by value  
⇒ function is passed a copy of the address

● Using this pointer copy, the function can access the
associated variable using the *-operator („dereference“) and
change it this way: 
⇒ call by reference void inc(int *x) {

(*x)++;
}
int main(void) {

int foobie = 42;
inc(&foobie);

...

C “crash course” 31

Pointers as Function Parameters (2)
● Example:  

swap variable  
values 
 
 
 
 
 
 
 
 

● swap() takes addresses of two variables
● Use of *-operators to access the referenced variables

void swap(int *a, int *b)
{

int tmp = *a;
*a = *b;
*b = tmp;

}

int main(void)
{

int olerant = 42, ernational = 4711;

swap(&olerant, &ernational);

printf(“%d %d\n”, olerant, ernational);
return 0;

}

C “crash course” 32

Pointers to Structures
● Analogous to “pointers to variables”
● Example: linked list 
 
 
 
 
 
 
 
 

● NULL: ”special” address value, here used to indicate list
termination

#include <stdio.h> /* definition of NULL */

struct listelement {
char ly;
struct listelement *next;

} a, b, c;

a.next = &b;
b.next = &c;
c.next = NULL; /* = 0, read the docs! */

C “crash course” 33

Pointers to Structures (2)
● Acess to structure elements using a pointer
● Well-known procedure:

● * operator references the structure
● . operator used to access the element
● Operator precedence at work: we have to use brackets here! 
 
 
 
 
 
 
 

● identical, but (syntactically) nicer (more easily readable!): 
-> -operator

struct listelement {
char ly;
struct listelement *next;

} a, *p;

p = &a;
(*p).ly = 'a';

p->ly = 'a';

C “crash course” 34

Pointers (4)
● Also possible, but not as common: 

pointers to pointers (to pointers to...) 
 
 
 

● Pointers to functions 
 
 

● E.g. used to pass a function as a parameter to another function
● Example: library function qsort takes a parameter which is a pointer to

a comparison function to compare tuples of elements

int x, *ptr,
**ptr_ptr;
ptr_ptr = &ptr;
ptr = &x;
**ptr_ptr = 4711;

int (*func)();
func = &myfunction;
(*func)();

C “crash course” 35

Typedef
● Definition of a new name for an existing type
● Syntax: like variable declaration, put typedef in front: 
 
 
 

● Abstraction: the actual type is hidden and can be
exchanged easily (well-known examples: pid_t, FILE)

● Documentation: simple names easier to read/understand
than complex pointer to a structure

typedef int Length; /* this line does not use any
memory! */

Length len, max_length;
void set_length(Length l) { ... }

typedef struct listelement *LEPtr;
LEPtr elem1, elem2;
LEPtr find_elem(LEPtr firstelem, int searchnum)
{ ... }

C “crash course” 36

Arrays
● Similar to Java, but...

● Dimensions can only be constants! (except for C99...)
● Uninitialized global Arrays filled with 0s (not guaranteed for embedded!)
● Contents of uninitialized local arrays is undefined
● When using initializers, missing values at the end are filled with zeros 
 
 
 
 
 

● No bounds checks when accessing arrays! 
⇒ Effects when reading/writing outside of the array bound range from
„nothing happens“ to program crashes to completely undefined behavior!

● Real multi-dimensional arrays are also possible

int primes[100] = {2, 3, 5, 7, 11, 13, 17};
/* primes[7] to primes[99] are set to 0! */

/* automatic dimensioning */
int even[] = {2, 4, 6, 8, 10, 12};

C “crash course” 37

Multi-Dimensional Arrays
● Definition and initialization 
 
 
 

● Default values defined as for one-dimensional arrays
● Access identical to Java:

int calendar[12][31]; /* 12 “rows”, 31 “columns” */
int lecture_limits[][5] =
 { { 27, 27, 22, 27, 27 }, /* odd weeks */
 { 27, 27, 22, 27, 27 } }; /* even weeks */

lecture_limits[1][3]--; /* one less chair */

C “crash course” 38

Arrays (2)
● Arrays of pointers 
 

● Arrays of structures 
 

● Arrays of char
● Representation of strings in C!
● C strings are sequences of chars terminated by a 0 character
● Initialization like normal arrays or using double quotes 
 
 
 
 

● More on strings later

int *quark[10];

struct listelement my_elements[50] =
 { { 12, NULL }, { 80, NULL } };

/* three times the same using different syntax */
char text1[] = { 'f', 'o', 'o', 0 };
char text2[] = { 102, 111, 111, 0 };
char text3[] = “foo”;

C “crash course” 39

Programs Consisting of Multiple Files

hello.c
#include <stdio.h>

void hello() {
 printf(“Hello, world!\n”);
}

main.c
int main() {
 hello();
 return 0;
}

● Let‘s try... 

● ...this works!
● Files are compiled separately
● implicit declaration of hello()  

(return type int, no checking of parameter types) (=> warning!)
● Compiler notes that hello is an undefined symbol
● Linker finds this symbol in the other compilation unit and patches the call

site with the correct function address

● Very questionable approach (why?)

 $ gcc main.c hello.c -o hello_world.elf

C “crash course” 40

Programs Consisting of Multiple Files (2)

hello.c
#include <stdio.h>

void hello() {
 printf(“Hello, world!\n”);
}

main.c
void hello();

int main() {
 hello();
 return 0;
}

● This also works when using -Werror
● ...still not a good solution

● Declaration of hello() in hello.c might change!
● Both have to use an identical declaration (why?) 

● Even better: both use the same declaration 
 → Use the preprocessor

C “crash course” 41

Programs Consisting of Multiple Files (3)

hello.c

#include “hello.h”
#include <stdio.h>

void hello() {
 printf(“Hello, world!\n”);
}

main.c

#include “hello.h”

int main() {
 hello();
 return 0;
}

● This is the correct way to do it!
● #include is a preprocessor command
● preprocessor copies contents of header file to its location in the file
● File paths in „“ are relative to the directory of the current .c file
● File paths in <> relate to compiler-defined and platform-specific

directories

hello.h
void hello();

C “crash course” 42

Programs Consisting of Multiple Files (4)

hello.c

#include <stdio.h>

void hello() {
 printf(“Hello, world!\n”);
}

main.c
#include “hello.c”

int main() {
 hello();
 return 0;
}

● Never use this!

$ gcc main.c hello.c -o hello_world.elf
/tmp/ccvCawGO.o: In function `hello':
hello.c:(.text+0x0): multiple definition of `hello'
/tmp/cc6gea2y.o:main.c:(.text+0x0): first defined here
collect2: ld returned 1 exit status

C “crash course” 43

Programs Consisting of Multiple Files(5)

linker

main.o hello.o
main
?hello

hello
?printf

libc

compiler compiler

hello.c
#include “hello.h”
#include <stdio.h>

void hello() {
 printf(“Hello, world!\n”);
}

main.c
#include “hello.h”

int main() {
 hello();
 return 0;
}

.elf

C “crash course” 44

Modules
● For global variables we distinguish between...

● variables only accessed from inside the module they are declared in
● and variables which are also accessed from other modules

● Access to global variables of other modules using extern  
 

● static makes global variables invisible  
for other modules 
 

● Enables encapsulation of data inside a module
● Prevents name collisions at link time
● Considered good programming style

compilation_unit_2.c
extern int eastwood;

compilation_unit_1.c
int eastwood;

compilation_unit_2.c

extern int eastwood;

compilation_unit_1.c

static int eastwood;

Linker error

C “crash course” 45

Modules (2)
● To access functions in other modules, extern is not

required...
● Functions can also be declared static

● Used for functions that should only be visibly inside of a module (i.e.,
the current C source code file); these are not part of the module
interface

● Local variables can also be declared static
● This has a completely different meaning!
● Variable value “survives” between subsequent function calls:

unsigned odd_number(void)
{

static unsigned n = 1;
return n += 2;

}

C “crash course” 46

Preprocessor
● Definition and use of preprocessor symbols 
 

● conditional compilation 
 
 
 
 
 

● Preprocessor is smart enough not to modify strings
● ...but it‘s not very much smarter... 
 
 

#define Horse 4711
printf(“%d”, Horse); transformed  

into
printf(“%d”,4711);

#define Horse 4711
#ifdef Horse
printf(”Horse.\n”);
#else
printf(“No Horse.\n”);
#endif

transformed  
into

printf(”Horse.\n”);

#define Horse 17+4
if (3*Horse == 63) {
 ...
}

transformed  
into

if (3*17+4 == 63)
{
 ...
}

C “crash course” 47

Preprocessor (2)
● Parameterized macros

● No space between name und „(“, no „;“ at the end of the line! 

● pitfall brackets 
 
 

● Solution: use brackets around every use of the parameter as well as the
overall expression! 
 
 

● Macros spanning multiple lines: use „\“ at end of line 
 

#define SQUARE(x) x*x
printf(“%d”,SQUARE(3));

transformed  
into

printf(“%d”,3*3);

transformed  
into

#define SQUARE(x) x*x
printf(“%d”,SQUARE(1+2));

printf(”%d”,1+2*1+2);

transformed  
into

#define SQUARE(x) ((x)*(x))
printf(“%d”,SQUARE(1+2));

printf(”%d”,((1+2)*(1+2)));

#define SQUARE(x) \
 ((x)*(x))

C “crash course” 48

Preprocessor (3)
● Parameterized macros

● pitfall: side effects! 
 
 

● ...what is the output?
● Even worse when using function calls with side effects! 
 
 

● if conditions with expressions

transformed  
into

#define SQUARE(x) ((x)*(x))
int x = 2;
printf(“%d”,SQUARE(++x));

printf(”%d”,((++x)*(++x));

...
printf(“%d”,SQUARE(launch_missile()));

#define Horse 4711
#if Horse == 815
printf(”Horse.\n”);
#else
printf(“No Horse.\n”);
#endif

transformed  
into

printf(”No Horse.\n”);

C “crash course” 49

Include Guards

● Scenario: multiple header files, mutual includes 
 
 
 
 
 
 
 

● Contents of header files repeat (at)
● Endless recursion (at)

● Solution: include guards →

foo.h bar.h

clock.h serial.hserial.h

scheduler.h

quark.h

clint.h

ly.h

1

1

2

2 <whatever>.h
#ifndef __WHATEVER_H__
#define __WHATEVER_H__
/* header file contents */
#endif

C “crash course” 50

Unions
● struct  

groups multiple elements in memory one after the other
● union groups multiple elements in memory on top of each

other #include <stdio.h>

union dontknow {
 char ly[4];
 int eastwood;
}

union dontknow whatever=”foo”;

int main() {
 printf(“%x\n”, whatever.eastwood);
 whatever.eastwood=7496034;
 printf(“%s\n”,whatever.ly);
 return 0;
}

$./unions.elf
6f6f66
bar

Only the first  
element can be

initialized!

● i.e. the same memory
area can be accessed
as int as well as an
array char[4](on a
32 bit machine)

C “crash course” 51

Arrays in Memory
● Array elements are stored in memory one after the other 
 
 
 
 
 

● The elements can, in turn, be complex data structures
● e.g., a 3-element array

short int foo = 24;
char wort[] = “quark”; /* == {'q','u', ... 'l',0}*/
int kuckuck = 0xABCD;

'u' 'a' ‘r' ‘k' 0

int mult[4][3] = { {0,0,0},
 {0,1,2},
 {0,2,4},
 {0,3,6} };

0 0 0 0 1 2 0 2 4 0 3 6

00x18 'q'00x18 00x180xab0xcd

4 bytes

0 0

C “crash course” 52

Arrays in Memory (2)
struct element {

int x,y;
char text[16];

};

struct element matrix[3][2] = { { {0,0,"null,null"}, {0,1,"null,eins"} },
 { {1,0,"eins,null"}, {1,1,"eins,eins"} },
 { {2,0,"zwei,null"}, {2,1,"zwei,eins"} }

 };

Contents of section .data:
 8049520 00000000 00000000 2c940408 00000000 ,.......
 8049530 00000000 00000000 00000000 00000000
 8049540 00000000 00000000 6e756c6c 2c6e756c null,nul
 8049550 6c000000 00000000 00000000 01000000 l...............
 8049560 6e756c6c 2c65696e 73000000 00000000 null,eins.......
 8049570 01000000 00000000 65696e73 2c6e756c eins,nul
 8049580 6c000000 00000000 01000000 01000000 l...............
 8049590 65696e73 2c65696e 73000000 00000000 eins,eins.......
 80495a0 02000000 00000000 7a776569 2c6e756c zwei,nul
 80495b0 6c000000 00000000 02000000 01000000 l...............
 80495c0 7a776569 2c65696e 73000000 00000000 zwei,eins.......

matrix[1][1].x

C “crash course” 53

Arrays and Pointers
● Array identifiers can be seen as constant pointers to the

start of the array 
 
 

● Pointers can be used like array identifiers 
 

● ...but not always the other way round
● Array identifiers are no variables, but constants!
● They have no address in memory – different to pointers!
● &text is nonsentical, but returns the same address as text!

char text[] = “quark”;
char *c = text; /* synonymous to &(text[0]) */
*c = 'k';

c[1] = 'w'; /* text is now “qwark”! */

text = 'k'; / text is now “kwark”! */
/* text = c; WOULD THROW AN ERROR! */
c = (char*) &text; /* correct address, incorrect type */

C “crash course” 54

Pointer Arithmetics
● We can “compute” using pointer and array identifiers: 
 
 
 
 
 

● text[4] is another expression for *(text+4)
● text+1 can be written as &(text[1])
● even c[-1] is possible instead of *(c-1)!

char text[] = “quark”;
char *c = text+1;
c = 'w'; / “qwark” */
(text+4) = 'b'; / “qwarb” */
(c-1) = 'z'; / “zwarb” */

C “crash course” 55

Pointer Arithmetics (2)
● This code outputs “quark” three times 

char text[]=”quark”;

int i;
char *c;

for (i=0;i<7;i++) /* normal array access */
printf(“%c”,text[i]);

for (i=0;i<7;i++) /* using pointer arithmetics */
printf(“%c”,*(text+i));

 /* more pointer arithmetics */
for (c=text;c<=&text[6];c++)

printf(“%c”,*c); p: pointer, s: scalar value

p+s is equal to &(p[s])
*(p+s) is equal to p[s]

p++ is equal to p=&(p[1])

C “crash course” 56

Pointer Arithmetics (3)
● Also works for arrays which

are not of type char
● since p+s = &(p[s]), p is

not incremented by 1 (Byte),
but rather by 4!

→ Address difference
depends on the  
pointer type!

short int dummy = 1;
char bla='A',blb='B';
int mult[4][3] = { {0,0,0},
 {0,1,2},
 {0,2,4},
 {0,3,6} };  
int *p = &mult[2][1];

int main() {
p++;
return 0;

}

0 0 0 0 1 2 0 2 4 0 3 6 0x080
497e411 AB

4 bytes 0x080
497e4

0x080
497e0
0x080
497e0

mult

p

C “crash course” 57

Multi dimensional Arrays
● Pointer arithmetics also works for

multi dimensional arrays
● Six different ways to write the

same operation →

char mult[4][3] = { {0,0,0},
 {0,1,2},
 {0,2,4},
 {0,3,6} };  

mult[2][1] = 5;

*(mult[2]+1) = 5;

(*(mult+2))[1] = 5;

((mult+2)+1) = 5;

*(*mult + 2*3 + 1) = 5;

*(*mult+7) = 5;

0 0 0 0 1 2 0 5 4 0 3 6

mult

C “crash course” 58

Strings
● Literals

char foo[]=”quark”;
int main () {
 foo[0]='k';
 return 0;
}

char *foo=”quark”;
int main () {
 foo[0]='k';
 return 0;
}

● operates on char array 
char-Feld with contents  
{ ‘q’, ‘u’, ‘a’, ‘r’, ‘k’ }

$./literals.elf
Segmentation fault

● Pointer to read-only data
Contents of section .rodata:
 8048428 03000000 01000200
71756965
 73656c00 quark.

Contents of section .data:
 8049540 71756965 73656c00
 quark.

● What about this code?

**

int main () {
 char foo[]=”quark”;
 foo[0]='k';
 return 0;
}

*) output of objdump -s programm.elf

C “crash course” 59

Strings
● Inputting strings

● dangerous (buffer overflow!) 
 
 

● better: 
 

● Library functions 
 
 

● operate character by character until '\0‘ is read
● also potentially dangerous
● better: strncpy, strncmp, strncat
● additional parameter limits processing to n characters

char foo[64];
scanf(“%s”,&foo);

char foo[64];
scanf(“%63s”,&foo);

char *strcpy(char *dest, const char *src);
int strcmp(const char *s1, const char *s2);
char *strcat(char *dest, const char *src);

C “crash course” 60

Further reading (if you want to dig deeper)…
1. Brain W. Kernighan, Dennis M. Ritchie 

The C Programming Language (2nd Edition)  
Prentice Hall 1988, ISBN 978-0131103627 
– still the standard book on C programming, but this doesn’t include more recent
developments in C

2. Peter van der Linden 
Expert C Programming: Deep C Secrets (1st Edition) 
Prentice Hall 1994, ISBN 978-0131774292 
– this is more of a second book for somewhat experienced C programmers, written in
a more conversational style and supplemented with real-world examples and tricks

3. Igor Zhirkov  
Low-Level Programming: C, Assembly, and Program Execution on Intel® 64
Architecture  
Apress 2017, ISBN 978-1484224021  
– this book concentrates on the relation of computer architecture, assembly and C
code; it covers some interesting topics on compiling C code

4. W. Richard Stevens, Stephen A. Rago 
Advanced Programming in the UNIX (R) Environment (2nd Edition)  
Addison-Wesley 2005, ISBN 978-0201433074 
– the standard book on programming in C on Unix-like systems

