
Compiler Construction
Operating Systems

Theoretical Exercise 1: Solutions and Discussion

Michael Engel

Compiler Construction and OS TE1 2

1.1 Parameter passing
Without compiling and running the
program, indicate which value is
returned by the main function?
• Typical piece of code demonstrating

the shadowing (overlaying) of variable
names in C. We have:
• a global variable a
• a local variable a declared inside increment_with_value

• main sees value of global a (23) when calling increment_with_value
• increment_with_value has its own local variable a (located on the

stack) ➛ it increments its value instead of the global variable
• When it returns, its stack frame (with its local var. a) is invalidated
• C uses call-by-value semantics ➛ value of a does not change in main
• Thus, a still has the value 23, which is returned by main

#include <stdio.h>

int a = 23;

void increment_with_value (int a, int b) {
 a += b;
}

int main(void) {
 increment_with_value(a, 1);
 return a;
}

Compiler Construction and OS TE1 3

1.2 Symbols
If we compile the program using
gcc -std=c11 -Wall -o test test.c
and execute nm test afterwards, the nm
output does not contain a memory address
for variable b. Why?
• nm only gives the values for statically

allocated variables, i.e. global initialized (data segment) and
uninitialized (bss segment) variables, variables declared static inside of
functions, and text segment symbols such as functions

• variable b is a parameter to the function increment_with_value,
➛ it is a local variable which is located on the stack

• location of b is relative to the current stack pointer and depends on, e.g.
• the stack location in memory
• the call depth if increment_with_value was called recursively

• static analysis of the executable by nm is unable to retrieve b’s address

#include <stdio.h>

int a = 23;

void increment_with_value (int a, int b) {
 a += b;
}

int main(void) {
 increment_with_value(a, 1);
 return a;
}

Compiler Construction and OS TE1 4

1.3 C arrays
a. Without compiling and running the
program, give the value printed for foo
• The answer depends on the protective

measures your C compiler employs
• String s is an array of char with 12

elements ➛it uses 12 bytes on the stack
• The other local variable foo is located after s on the stack
• strcpy copies contents of string t to the memory addresses starting at

the first byte of s – but t has 14 characters plus terminating zero byte
• last bytes of t overwrite the memory in which foo is stored:

ASCII characters for digits 2 and 3 and the terminating zero byte:
50 (digit 2), 51 (digit 3), 0

• foo was initialized to zero using int foo = 0;
• So the four bytes of foo are: 50 (digit 2), 51 (digit 3), 0, 0
• Little endian byte order: 50 * 20 + 51 * 28 + 0 * 216 + 0 * 224 = 13106

#include <stdio.h>
#include <string.h>

int main(void) {
 int foo = 0;
 char s[12];
 char *t = "01234567890123";

 printf("foo %p\n s %p\n", &foo, s);
 strcpy(s, t);
 printf("foo = %d\n", foo);
}

Compiler Construction and OS TE1 5

1.3 C arrays
b. Describe briefly the problem that shows
up in the given code which results in this
output
• A traditional C compiler provides no

memory protection.
• strcpy does not check if the string to

be copied fits into the destination memory space (since a string is just a
pointer to a zero-terminated array of chars)

• A copy of 14(+1) bytes into a 12 byte buffer writes over the end of the
buffer, "spilling" into the next variable on the stack: foo

• This is a classic example of a buffer overflow security problem!

#include <stdio.h>
#include <string.h>

int main(void) {
 int foo = 0;
 char s[12];
 char *t = "01234567890123";

 printf("foo %p\n s %p\n", &foo, s);
 strcpy(s, t);
 printf("foo = %d\n", foo);
}

Compiler Construction and OS TE1 6

1.3 C arrays
c. Modern C compilers protect against the
problems shown in this example. For gcc
or clang, find out which command line
option can be used to enable this protection
• If you try to compile and run the

program on a current system/compiler,
it will probably crash (segmentation fault or similar)

• We’ve seen that this is a typical buffer overflow
• Modern C compilers protect against this, e.g. by reordering variables on

the stack or employing special canary values on the stack to detect a
buffer that overflowed

• A modern compiler can be instructed to omit these protections, e.g. by
using the command line option -fno-stack-protect.

• More details can e.g. be found at
https://mudongliang.github.io/2016/05/24/stack-protector.html

#include <stdio.h>
#include <string.h>

int main(void) {
 int foo = 0;
 char s[12];
 char *t = "01234567890123";

 printf("foo %p\n s %p\n", &foo, s);
 strcpy(s, t);
 printf("foo = %d\n", foo);
}

https://mudongliang.github.io/2016/05/24/stack-protector.html

Compiler Construction and OS TE1 7

1.3 C arrays
d. What would the output be if line 5 was
 replaced by static int foo = 0;
 Briefly explain whether this change
 would solve the underlying problem.
• Declaring a variable as static inside a

function ➛ value of the variable has to
be retained across function calls
• Whenever the function is called again, a retains its previous value

• To enable this, a has to be stored outside of the stack
• Thus, is is treated like a global variable and stored in a different

memory area
• Overwriting the string s in main is unable to overwrite foo any longer

• However, other elements on the stack could be overwritten, e.g. the
return address
• another serious security problem: return-oriented programming

#include <stdio.h>
#include <string.h>

int main(void) {
 static int foo = 0;
 char s[12];
 char *t = "01234567890123";

 printf("foo %p\n s %p\n", &foo, s);
 strcpy(s, t);
 printf("foo = %d\n", foo);
}

Compiler Construction and OS TE1 8

1.4 Func’s and vars
a. Which memory segments are the
function rec(), variables c, d, counter,
and a as well as parameter a number
located in?
• rec() is a function ➛ text segment
• c is a const variable

In most systems, constant data types
have a special write-protected memory
segment rodata (read-only data)

• d is an uninitialized global variable ➛ bss segment
• counter is an initialized global variable ➛ data segment.
• a is a local variable in main ➛ stored on the stack.
• number (parameter) is a local variable in rec ➛ also on the stack

#include <stdio.h>

const int c = 1; int d, counter = 0;

unsigned int rec(unsigned int number) {
 counter ++;
 return rec(counter);
}

int main(void) {
 int a = rec(c);
 printf("%d\n", a);
 return 0;
}

Compiler Construction and OS TE1 9

1.4 Func’s and vars
b. What happens if you execute the
compiled program?
What changes if you add a local variable
char array[1000] to function rec?
• rec contains an endless recursion:

• For every subsequent invocation
of rec, an additional frame (with
storage space for number and a return
address) is created on the stack, using memory (e.g. 8 bytes)

• After a (large) number of recursive calls, the stack will attempt to
overwrite the heap
• usually caught by the OS which kills the application

• Adding a local variable char array[1000] will increase each stack
frame’s size
• The program will crash even earlier, since the stack grows faster

#include <stdio.h>

const int c = 1; int d, counter = 0;

unsigned int rec(unsigned int number) {
 counter ++;
 return rec(counter);
}

int main(void) {
 int a = rec(c);
 printf("%d\n", a);
 return 0;
}

