B NTNU | sioncindrecnoivay

Compiler Construction
Operating Systems

Theoretical Exercise 1: Solutions and Discussion

Michael Engel



1 _1 Parameter passing #include <stdio.h>

int a = 23;
Without compiling and running the void increment_with_value (int a, int b) {
program, indicate which value is }a+=b?
returned by the main function?
. . . int main(void) {
« Typical piece of code demonstrating increment,_with_value(a, 1);

the shadowing (overlaying) of variable return a;
names in C. We have: }

* a global variable a,
* alocal variable a declared inside increment_with_value
« main sees value of global a (23) when calling increment_with_value

« increment_with_wvalue has its own local variable a, (located on the
stack) > it increments its value instead of the global variable

 When it returns, its stack frame (with its local var. a) is invalidated
« C uses call-by-value semantics > value of a does not change in main
* Thus, a still has the value 23, which is returned by main

B NTNU | sencand rechnoivsy Compiler Construction and OS TE1 2



1 . 2 Sy m b (9) I S #include <stdio.h>

int a = 23;
If we compile the program using void increment_with_value (int a, int b) {
gce -std=c11 -Wall -o test test.c a+=D;

and execute nm test afterwards, the nm }
int main(void) {

output does not contain a memory address | /o i valuea, 1):
for variable b. Why? return a;

« nm only gives the values for statically }

allocated variables, i.e. global initialized (data segment) and
uninitialized (bss segment) variables, variables declared static inside of
functions, and text segment symbols such as functions

« variable b is a parameter to the function increment_with_value,
> it is a local variable which is located on the stack

 location of b is relative to the current stack pointer and depends on, e.g.
* the stack location in memory
« the call depth if increment_with_value was called recursively
 static analysis of the executable by nm is unable to retrieve b’s address

B NTNU | scenctandtecmoivsy Compiler Construction and OS TE 3



1.3 C arrays

a. Without compiling and running the
program, give the value printed for foo

 The answer depends on the protective
measures your C compiler employs

« String s is an array of char with 12
elements >it uses 12 bytes on the stack

#include <stdio.h>
#include <string.h>

int main(void) {
int foo = 0;
char s[12];
char *t="01234567890123",

printf("foo %p\n s %p\n", &foo, S);
strepy(s, t);
printf("foo = %d\n", foo);

}

« The other local variable foo is located after s on the stack

« gstrcpy copies contents of string t to the memory addresses starting at
the first byte of s — but t has 14 characters plus terminating zero byte

» last bytes of t overwrite the memory in which foo is stored:
ASCII characters for digits 2 and 3 and the terminating zero byte:

50 (digit 2), 51 (digit 3), 0

« foo was initialized to zero using int foo = O;
« So the four bytes of foo are: 50 (digit 2), 51 (digit 3), 0, O
» Little endian byte order: 50 * 20+ 51 * 28 + 0 * 216 + 0 * 224 = 13106

@ NTNU | S oy Compiler Construction and OS TE1




#include <stdio.h>
1 -3 C arrays #include <string.h>
int main(void) {
b. Describe briefly the problem that shows | intfoo=0;

: , . : . char s[12];
up in the given code which results in this char *t - '01254567890125"

output
o _ ) printf("foo %p\n s %p\n", &foo, s);
« Atraditional C cpmpller provides no strepy(s, b);
memory protection. printf("foo = %d\n", foo);

}

« strcpy does not check if the string to
be copied fits into the destination memory space (since a string is just a
pointer to a zero-terminated array of chars)

« Acopy of 14(+1) bytes into a 12 byte buffer writes over the end of the
buffer, "spilling" into the next variable on the stack: foo

« This is a classic example of a buffer overflow security problem!

@ NTNU | S oy Compiler Construction and OS TE1 5



#include <stdio.h>
1 = 3 C arrays #include <string.h>

int main(void) {

c. Modern C compilers protect against the | intfoo=0;

problems shown in this example. For gcc
or clang, find out which command line

char s[12];
char *t ="01234567890123";

option can be used to enable this protection| Printf(*foo %p\n s %p\n, &foo, 5);

_ strepy (s, b);
If you try to compile and run the printf("foo = %d\n", foo);

program on a current system/compiler, U

it will probably crash (segmentation fault or similar)
We've seen that this is a typical buffer overflow

Modern C compilers protect against this, e.g. by reordering variables on
the stack or employing special canary values on the stack to detect a
buffer that overflowed

A modern compiler can be instructed to omit these protections, e.g. by
using the command line option -fno-stack-protect.

More details can e.g. be found at
https://mudongliang.github.io/2016/05/24/stack-protector.html

@ NTNU | S oy Compiler Construction and OS TE1 6


https://mudongliang.github.io/2016/05/24/stack-protector.html

#include <stdio.h>
1 = 3 C arrays #include <string.h>
int main(void) {
d. What would the output be if line 5 was static int foo = O;

- A h :
replaced by static int foo = O; har i%lf..]élzmswsgol%u.

Briefly explain whether ’[.hIS change DTt To0 %P\ & Fp\n", &ef00, 5);
would solve the underlying problem. strepy (s, b):

 Declaring a variable as static inside a printf("“foo = %d\n", foo);

function > value of the variable has to
be retained across function calls

« Whenever the function is called again, a retains its previous value
« To enable this, a has to be stored outside of the stack

« Thus, is is treated like a global variable and stored in a different
memory area

» Overwriting the string s in main is unable to overwrite foo any longer

* However, other elements on the stack could be overwritten, e.g. the
return address

« another serious security problem: return-oriented programming

B NTNU | scenctandtecmoivsy Compiler Construction and OS TE 7



1.4 Func’s and vars

a. Which memory segments are the
function rec(), variables c, d, counter,
and a as well as parameter/4 number
located in?

rec () is a function > text segment

c is a const variable

In most systems, constant data types
have a special write-protected memory
segment rodata (read-only data)

#include <stdio.h>
const int ¢ = 1; int d, counter = O;

unsigned int rec(unsigned int number) {
counter ++;
return rec(counter);

}

int main(void) {
int a = rec(c);
printf("%d\n", a);
return O;

}

d is an uninitialized global variable > bss segment
counter is an initialized global variable > data segment.
a is a local variable in main > stored on the stack.

number (parameter) is a local variable in rec > also on the stack

B NTINU | Soenetanirechnoney Compiler Construction and OS TE1 8




1.4 Func’s and vars

b. What happens if you execute the
compiled program?

What changes if you add a local variable
char array[1000] to function rec?

e rec contains an endless recursion:

* For every subsequent invocation
of rec, an additional frame (with

#include <stdio.h>
const int ¢ = 1; int d, counter = O;

unsigned int rec(unsigned int number) {
counter ++;
return rec(counter);

}

int main(void) {
int a = rec(c);
printf("%d\n", a);
return O;

}

storage space for number and a return
address) is created on the stack, using memory (e.g. 8 bytes)

« After a (large) number of recursive calls, the stack will attempt to

overwrite the heap

« usually caught by the OS which kills the application
« Adding a local variable char array[1000] will increase each stack

frame’s size

« The program will crash even earlier, since the stack grows faster

B NTINU | Soenetanirechnoney Compiler Construction and OS TE1 9




