B NTNU | sioncindrecnoivay

Compiler Construction

Solutions to the 2020 exam

Michael Engel

1 Regular Languages

1.1 Write a regular expression for all strings of a’s and b’s which contain
the substring abba

(a|b)*abba(alb)*

1.2 Write a regular expression for all strings of x’s and y’s where every y is
immediately followed by at least 3 x’s

(X] (yxxx))*

@ NTNU | S oy Compiler Construction — Solutions exam 2020 2

1 Regular Languages

1.3 Write a regular expression for all strings of p’s and g’s which contain an odd
number of q’s

p*q((ap*q)lp)

1.4 Afinite language is a language with a finite number of strings. For example,

the language with only the strings a, ba, and bba is finite, while the languages in
question 1.1, 1.2, and 1.3 above are not finite. Are all finite languages regular? If
so, explain why. If not, give an example of a finite language which is not regular.

Yes, all finite languages are regular. Imagine a finite language comprised of
strings s1, S2, ..., sn. We can simply write a regular expression to describe it by

ORing together all possible cases (s1) | (s2) | ... | (sSn).

Note that this only works for finite languages, because there have a finite
number of cases to OR together.

@ NTNU | S oy Compiler Construction — Solutions exam 2020 3

2 NFAs and DFAs

2.1. Convert the NFA given in fig. 1 to a DFA

Whoops. This was the PDF version of a draft
of the 2020 exam and it contained the wrong
automaton. This is a DFA already (which is
also a valid NFA).

2.2 Give the corresponding regular expression.

(ab*d)” ((ab’cg) | (ef))

N i Uni i f . . .
@ NTINU | S Tecimoioss Compiler Construction — Solutions exam 2020 4

3 Compiler Structure

For each of the rules of a programming language below, specify which
phase of the compiler should verify that the program adheres to that rule...
3.1 A function call has the correct number of arguments

3.2 Digits [0-9] may appear in identifiers, but not as the first character
(e.g., a123 and pi314 are valid identifiers,
but 2big is not).

3.3 Every variable must be declared before it is used in the program (as in
C).

3.4 Assignments such as a=42; must end with a semicolon (;).

[see example exam solutions question 1]

@ NTNU | S oy Compiler Construction — Solutions exam 2020 5

4 LL Parsing

e
4.1 Which non-terminals (if any) can derive 1 Qq
the empty string? Q — QO m
| €

Q (every production for S involved at least one non-terminal)
4.2 What are the FIRST sets of Q and S?

FIRST[S] = {m,q,c} FIRST[Q] = {m}

4.3 What are the FOLLOW sets of Q and S?

FOLLOW[S] ={a,b} FOLLOWIQ] = {g, m}

@ NTNU | S oy Compiler Construction — Solutions exam 2020

4 LL Parsing P san®

e
4.4 This grammar can not be parsed by an 1 Q q
LL(O) or LL(1) parser. Explain why not. Q — QO m
| €

It contains left recursion both in the first and fourth rule

4.5 Rewrite the grammar so that it accepts the same language, but can be
parsed by an LL(1) parser (use by left factoring and eliminate left
recursion).

S ~ ¢ SREST
| Q q SREST
SREST ~ a S b SREST

O
\
m O m

@ NTNU | S oy Compiler Construction — Solutions exam 2020 7

5 Parse trees and ASTs

5.1 Draw the parse tree for the input string

bxc+3+cxb.

Rule

1. Start > Expr

2. Expr > Expr + Term
4. Expr > Term

5. Term > Term * Factor
/. Term > Factor

9. Factor > number
10. Factor > ident

5. Term > Term * Factor
6. Term > Term / Factor
/. Term > Factor

10. Factor > ident

9. Factor > number

10. Factor > ident

@ NTNU

Norwegian University of
Science and Technology

Applied on
S

E

E+T
T+T
T*F+T
F*F+T
i*F+T
i*i+T
i*i+T*F
i*i+T/F*F
i*i+F/F*F
i*i+i/F*F
i*i+i/n*F

Result

O W O J o U W DD

Compiler Construction — Solutions exam 2020

Start — Expr

Expr — Expr + Term

| Expr - Term

| Term

Term — Term X Factor
| Term + Factor
| Factor

Factor — " (" Expr ")"
| number

| ident

5 Parse trees and ASTs

The following grammar is given:

5.1 Draw the parse tree for the input string

bxc+3+cxb.
Start
v
Expr
Expr + Term
" N\

Term

Term X Factor
FEE

Term X Factor /*\

Term =— Factor
Fagkor i i ‘
* Factor C
X !
3

@ NTNU | S oy Compiler Construction — Solutions exam 2020

O W O J o U W DD

Start — Expr

Expr — Expr + Term
| Expr - Term
| Term

Term — Term X Factor
| Term + Factor
| Factor

Factor — " (" Expr ")"
| number
| ident

Start — Expr
5 Parse trees and ASTs Bpr B Tem
| Term

The following grammar is given: Term — Term X Factor

O W O J o U W DD

| Term + Factor
. | Factor
5.2 Draw the reduced parse tree to obtain the Factor — " (" Expr ")"
abstract syntax tree (AST). | number
| ident

’ ‘(,/” " \\\\\“ 1
b/ \C 7\

- b
N
3 C

5.3 Derive a directed acyclic graph (DAG) from the AST that avoids code
duplications.

(see 5.3 in example exam solutions)

@ NTNU | S oy Compiler Construction — Solutions exam 2020 10

6 Control Flow Graphs

6.1 Draw the control flow graph (CFG) for

this piece of code

BB1 1.x =0
2.1 =1
3.b =2
BB2 W

4

@ 4. while (x < 100) {

5. X = X + 1;
6. if (a[x+i] > b)

v

BB5 8. print(a[b]); -

BB3

7. b = x + a[i];

BB4

@ NTNU | sanetandrecnoiogy

1 x = 0;
BB1 21 =1;
3 b =2;
BB2 4 while (x < 100) {
5 X =x + 1;
BB3 0 if (i[x+i] > b)
BB4 g b =x+ ali];

8 } .
BBS5 9 print(a[bl);

Split the code into
basic blocks (BB)

BB = linear code sequence
Jump at the end
Jump target at the start

Compiler Construction — Solutions exam 2020 11

6 Control Flow Graphs

BB1

6.2 Draw the dependence graph for the code. BB2

(construction as in 6.2 in the

example exam solution)

@ NTNU

Norwegian University of
Science and Technology

BB3
BB4

BB5

1 x = 0;
2 1 =1;
3 b= 2;

4 while (x < 100) {

5 X =X + 1;

if (a[xt1i] > b)

0
g b =x+ ali];
8 }

9 print (a[b]);

Compiler Construction — Solutions exam 2020

12

1 x = 0;
7 Three-Address Code i
O
7.1 Translate the do-loop in the code to an i ifi (i[§+i]a>[i§)).
equivalent while-loop. 6 x = x + 1;
7 } while (x < 100);
Prepend the loop body before the first 8 print(i);

iteration of the while-loop:
You could simplify the code to:

if (a[x+i] > 0) =1
§ = ox + ali] if (a[1] > @)
X = X + 1; 1 =al[l];
while (x < 100) { x = 13
if (a[x+i] > 0) while (x < 100) {
D= ox + alil: if (a[x+il > 0)
X = X + 1: i =x+ af[i];
) X = x + 1;
Y
print(i);

@ NTNU | S oy Compiler Construction — Solutions exam 2020 13

7 Three-Address Code

7.2 Translate the given
code to three-address
code (TAC). Show all
intermediate steps of
the translation.

This requires the
translation of the do-
loop from 7.1 since we
only have a translation
for a do-loop (see slide
set 13 for the detailed
steps).

Our specification of the
IR in the course could
be more formal...

Norwegian University of
Science and Technology

@ NTNU

to
tl
t2
t3
td
if
t5
t6

L1:
L2:

=0 // we omit the

= 1 // assignmts to x,i
= t0 + t1 /] X+i

= a[t2] // a[x+i]
=0

t4>=t3 goto L1

= a[tl] // aflil

= tO + t5 // i=x+ali]
t7 = to + 1 /] x=x+1
t8 = 100

X = 0;

i =1;

if (a[x+i] > 0)
i =x + al[i];

X =X + 1;

while (x < 100) {

if (a[x+i1] > 0)
x + a[il;
X + 1;

i =
X =

if t7 < t8 goto L4 // while(x<100)

t9 = t7 + tl /] X+i
t10 = a[t9] // al[x+i]
tll = 0
if t10>=tl1l goto L3
t12 = a[tl] // ali]
tl13 = t7 + t12 // i=x+a[i]
tl4 = t7 + 1 /] x=x+1
goto L2

// WAIT?!?

Compiler Construction — Solutions exam 2020 14

7 Three-Address Code

The Phi-functions
strike again!

to
tl
t2
t3
When entering the t4
while-loop for the first "

. . 5
time, the value of x is Ee
stored in t7, for BE
subsequent iterations | 5.

in t14

(fori: t1 and t13)
X
How do we implement
Phi-functions in TAC?
L3:

L4: ..

Norwegian University of
Science and Technology

@ NTNU

X = 0;
i =1;
if (a[x+i] > 0O)
1 = x + al[i];
© // we omit the X = x + 1:

1 // assignmts to x,i

while (x < 100) {

to + tl /] X+i
a[t2] // alx+i] if (a[x+i] > 0)
0 , P i=x+ alil;
t4>=t3 goto _ .
= a[t1] /7 ali] x = x+ 1
= tO + t5 // i=x+al[i] |}
t7 = t0 + 1 // x=x+1
t8 = 100
if t7 < t8 goto L4 // while(x<100)
t9 = t7 + tlw// x+i
t10 = a[t9] a[x+i]
tll = 0 _
if t10>=t1l goto L3 |
t1l2 = a[tl] // ali]
t13—+t7 + t12 // i=x+ta[i]
tl4 = t7 + 1 /] x=x+1
goto L2
/1 WAIT?!?
Compiler Construction — Solutions exam 2020 15

7 Three-Address Code

How do we implement
Phi-functions in TAC?

Add additional unique
temporal variables pO0,

p1 and copy the

respective value before

entering or leaving a

loop iteration or if/else

part!

Then use the unique
variables inside the
loop.

This violates a possible

SSA assumption!

—

t1
t2
t3
t4
if
t5
t6

L1:

2:

L3:

@ NTNU | sénetamdrecnoingy -4

© // we omit the

X = 0;
i =1;

if (a[x+ti] > 0)

= 1 // assignmts to x,i i =x+al[i];

= t0 + t1l // X+i X=X+1;

i} S[tz] /7 alx+i] while (x < 100) {
t4>=t3 goto L1 if (a[x+i] > 0)
= altl] //alil i=x+ al[i];
= t0 + t5 /] i=x+ali] X = x + 1:

t7 =t + 1 // x=x+1)

pod = tl // store i

pl = t7 // store X

t8 = 100

if pl < t8 goto L4 // while(x<100)

t9 = pl + pO // x+i

t10 = a[t9] // al[x+i]

tll = 0

if tl0>=tll goto L3

t1l2 = a[p0O] // ali]

tl13 = pO + t12 // i=x+ali]

pO® = tl13

t1l4 = pl + 1 /] x=x+1

pl = tl4

goto L2

... Compiler Construction — Solutions exam 2020 16

7 Three-Address Code

7.3 When translating switch statements to TAC,
you can use cascaded gotos or a jump table.
Shortly discuss the advantages and differences of
each approach.

This is a tradeoff between runtime and memory consumption (see slide set
13 slide 26/27 for the two implementations).

Cascaded gotos require a higher runtime, depending on the number of
switch labels you have to go through to find the one for the specific case.

Tables require more memory in general, especially for switch statements
with a sparse label space, e.g. 1, 100, 10000... (all table entries not
related to a label have to link to either error handling code or a default
label, depending on the semantics of your language)

@ NTNU | S oy Compiler Construction — Solutions exam 2020 17

8 Static Single Assignment Form

8.1 Give the result of splitting the code into l = 1
basic blocks. (see BBs on the right) BB1) é
BB1i., . —
8.2 Draw the CFG ;i ; 1 BB2 yhite (x < 100) |
using unique K1 =0 BB3 ~ if (J < 20) {
variable names BB2 ¥ FR
for each o [. BB4 i=1i+1;
) =~ while (k? < 100) oL
assignment ’ * U else {
as used — BB5 j = k;
in the SSA form. if (j? < 20) BB3 k = k + 2;
\ A 4 e
For variables j2 = i? BB4 33 = k? BBS BB6 |] =31+k
with ?, we i2 =i? + 1 k2 = k? + 2 _—
need a Phi- v Vv BB7 Teturn Ji
function! b 6. b = §7 + K? BBG6

R

@ NTNU | S oy Compiler Construction — Solutions exam 2020 18

BB7 8. return j?;

8 Static Single Assignment Form

BB1 41 - 1
8.3 Insert j1 =1 L=1
the required k1 =0 BB1 7 = 1;
Phi ((D) kBBZ * k = 0;
functions gy k2 = O(k1, ka) ' BB2 ... -
intO the j2 = (J]_ 36) while (k f“ 100) {
CEG i2 = ®(i1, i4) BB3 if (3 < 20) {
while (k2 < 100) PRy
_ BB4 '
* 1 =1+1;
if (j2 < 20) BB3 } else {

¥ & BB5 j=ki

k =k + 2;

j3 = i2 BB4 44 = k2 BB5
i3 =12 + 1 k3 = k2 + 2 } ——
v ¥ BB6 | J=31tk
:Ji:g : $E;‘§! ji; BB7 return j;“
e’ k= O (K2, K3) I8
j6 = j5 + kb4 A 4 :
BB7 8. return j2; BB6

@ NTNU | S oy Compiler Construction — Solutions exam 2020 19

9 Simple Optimizations

int foo(n) {

9.1 Apply constant folding and constant int %, y, z, a, b,
propagation and give the result x=23;
y=42;
. i z=69;
First: constant propagation
a = 23; a = X;
a = 23 + 4 * (23+42) * n; a = a + 4% (x+y)*n;
cC = n; cC = ny;
if (a > 10) { if (a > 10) {
b =a* 1+ 23*(at0+a); b= a3 %1 4+ x *
c =23 + 69; o xin
} 4
a =»b * 3; }

=b * 3;
Then: constant folding ?

}
23: <<< Note that we did not perform dead code elimination

a =

a = 23 + 260 * n;

C = n;

if (a > 10) {
b =a* 1+ 23*(a+0+a);
c = 92;

}

a =b * 3;

@ NTNU | S oy Compiler Construction — Solutions exam 2020

Cr

(a+ 0+ a);

20

9 Simple Optimizations

int foo(n) {

9.2 Apply algebraic simplification to the int %X, y, 2z, a, b, c;
result of question 9.1 and give the result x=23;
y=42;

After constant folding (from 9.1): 2=69;
a = 23; - -
a =23 + 260 * n; &= %
C = n; a =a t 4*(xty)*n;
if (a > 10) { ¢ = nj

b =a* 1+ 23*%(a+0+a); if (a > 10) |

c = 92; b=a*1l+x* (a+0+a);
} c = Xtz;
a =b * 3; }
After algebraic simplification: a =b* 3
a = 23; }
a =23 + 260 * n;
c = n;
if (a > 10) {

b = a + 23*(a+a); <<<a*1anda+0 each replaced by a

c = 92;
}
a =b * 3;

@ NTNU | S oy Compiler Construction — Solutions exam 2020 21

9 Simple Optimizations

int foo(n) {

9.3 Apply strength reduction to the result of int x, y, z, a, b, c;
question 9.2 and give the result x=23;
y=42;

After algebraic simplification (from 9.2): 2=63;
a = 23; - .
a =23+ 260 * n; a T
C = n; a =a t 4*(xty)*n;
if (a > 10) { ¢ =nj

b =a + 23*(ata); if (a > 10) {

c = 92; b=a*1l+x* (a+0+a);
} c = Xtz;
a =Db * 3; }

a=>b * 3

After strength reduction:)
a = 23;
a = 23 + 260 * n;
C = n;
if (a > 10) {

b =47 * a; <<< 23*(a+a) = 46*a; a + 23*(a+a) =47*a

c = 92;
ki
a =»b * 3;

@ NTNU | S oy Compiler Construction — Solutions exam 2020 22

10 lex

Extend this code to create a scanner that counts the number of (English)
vowels (i.e. aeiouAEIOU) and outputs it. Use whitespace as separators
between numbers and other text.

%4
#include <stdio.h>
enum { END = 256 };

int count;

%}

%%

end { return END; } // end must come first!
[aeiouAEIOU] { count++; }

. { printf("%c", yytext[O]); }
%%
int main(void) {
int token;
count = 0;

while (1) {

token = yylex();

if (token == END)

break;

}
printf("\n%d vowels\n", count);
printf("\nBye!\n");
return 0;

}

@ NTNU | sanetandrecnoiogy

% {
#include <stdio.h>
enum { END = 256 };

%

o\ o\

end { return (END); }
{ printf ("%c", yytext[0])

o\°
o\°

int main(void) {
int token;

while (1) {
token = yylex();

1f (token == END)
break;

}
printf ("\nBye!\n");
return 0;

Compiler Construction — Solutions exam 2020

4

23

}

