
Compiler Construction

Practical Exercise 6: Code generation
Guidelines and hints

Michael Engel

Compiler Construction PE6 Guidelines and hints

• Part 1
• Global String Table
• Global variables
• Functions
• Function parameters
• Arithmetic expressions
• Arithmetic statements
• Assignment statements
• print statements
• return statements

2

Topics related to code generation

Compiler Construction PE6 Guidelines and hints

• Part 2
• Local Variables
• Function calls
• Conditionals (if and relations)
• While loops
• Continue (Null statement)

3

Topics related to code generation

Compiler Construction 23: Register allocation 4

Compiler backend

tokens high-level
IR

instructionslow-level
IR

characters

binary

state-
ments

assembly scanner parser trees
CFGs

optimize optimize TAC or
similar

instruction selection,
register allocation

VSLC
backend

 system assembler
and linker

Compiler Construction PE6 Guidelines and hints 5

Let’s look at "Hello, world"

def hello()
begin
 print "Hello, world"
 return 0
end

VSL source code "prog.vsl"

.data ; data section
strout: .asciz "%s"
STR0: .asciz "Hello, world !"

.text ; text section

.globl main ; main (not here) would be global
hello: ; function hello with prepended '’
 pushq %rbp ; save frame ptr
 movq %rsp, %rbp ; rsp -> rbp
 movq $STR0, %rsi ; param 2 -> rsi
 movq $strout, %rdi; param 1 -> rdi
 call printf ; call libc printf!
 movq $'\n', %rdi
 call putchar
 movq $0, %rax ; return value in rax
 movq %rbp, %rsp ; restore frame ptr
 ret ; return from hello

x86-64 assembler "prog.s" on Linux

$ as -c -o prog.o prog.s
$ cc -o prog prog.o

Assemble to .o file and link:

The "cc" line does not call the C
compiler, but only the linker – it
automatically links libc

Compiler Construction PE6 Guidelines and hints

• Many x86-64 assembler examples for Linux on the net use the
"nasm" assembler!

• This has an incompatible syntax (intel syntax)!
• Especially the order of parameters is reversed…

• We use a version of the binutils assembler (in gcc or the clang
project)

• This uses Unix ("AT&T") assembler syntax

6

Caution!

Compiler Construction PE6 Guidelines and hints 7

Is this a working program?
.data
strout: .asciz "%s"
STR0: .asciz "Hello, world !"

.text

.globl main
main:
 call _hello
 ret
_hello:
 pushq %rbp
 movq %rsp, %rbp
 movq $STR0, %rsi
 movq $strout, %rdi
 call printf
 movq $'\n', %rdi
 call putchar
 movq $0, %rax
 movq %rbp, %rsp
 ret

$ as -c -o prog.o prog.s

$ cc -o prog prog.o
/usr/bin/ld: prog.o:
relocation R_X86_64_32S against
`.data' can not be used when
making a PIE object; recompile
with -fPIE
collect2: error: ld returned 1
exit status

Many assembler examples you can
find online use movq instructions to
load the absolute address of a string
(or other parameter).

This is no longer allowed on x86-64!

Compiler Construction PE6 Guidelines and hints 8

More fixes…
.data
strout: .asciz "%s"
STR0: .asciz "Hello, world !"

.text

.globl main
main:
 call _hello
 ret
_hello:
 pushq %rbp
 movq %rsp, %rbp
 leaq STR0(%rip), %rsi
 leaq strout(%rip), %rdi
 call printf
 movq $'\n', %rdi
 call putchar
 movq $0, %rax
 movq %rbp, %rsp
 ret

$ as -c -o prog.o prog.s
$ cc -o prog prog.o

$./prog
Segmentation fault (core dumped)
$

The correct way to load the address
of a variable (here: string parameters
for printf) is to use a rip-relative load
instruction.
This encodes the offset of the string
to the current rip of the instruction
and turns it into an absolute address.

However, the program still crashes!

Compiler Construction PE6 Guidelines and hints 9

A working program!
.data
strout: .asciz "%s"
STR0: .asciz "Hello, world !"

.text

.globl main
main:
 call _hello
 ret
_hello:
 movq %rsp, %rbp
 subq $8, %rsp
 pushq %rbp
 leaq STR0(%rip), %rsi
 leaq strout(%rip), %rdi
 call printf
 movq $'\n', %rdi
 call putchar
 movq $0, %rax
 movq %rbp, %rsp
 ret

$ as -c -o prog.o prog.s
$ cc -o prog prog.o

$./prog
Hello, world!
$

The problem here is the stack alignment
requirement of x86-64: The stack pointer
%rsp must be aligned to a multiple of
16 bytes when calling a libc function!

%rsp is aligned to 16 bytes when entering
main, but then call _hello pushes
8 bytes to the stack.

We fix the alignment by subtracting 8
from %rsp

Compiler Construction PE6 Guidelines and hints

• The main function
• Global variables?

• they need mutable memory
• Arguments?
• Expressions
• Assignments
• Expressions in print statements

10

What else do we need?

Compiler Construction PE6 Guidelines and hints

• Remember the calling convention from the x86-64 assembler
lecture on instruction set

• The first 6 args go into registers %rdi %rsi %rdx %rcx %r8 %r9
• Further args in the stack
• Stack will need 16 byte alignment

• All arguments (in VSL) are 64-bit integers

• However, main(argc, argv) is called in a different way:
• called from the libc startup code crt0
• 1st argument: number of command line args (int argc)
• 2nd argument: pointer to a list of char-pointers (char **argv)

11

Main function

Compiler Construction PE6 Guidelines and hints

• At runtime this has to be done:
• Find the count of arguments
• If there are some translate them from text to numbers
• Put them in the right places for an ordinary call
• Call the 1st function defined in the VSL source program
• Take the return value from that and return it to the calling

shell
• Return to shell

12

A generic 'main' for VSL programs

Compiler Construction PE6 Guidelines and hints

• A function to generate main will be supplied.
• This will simply generate assembly to point to the symbol t that

is the first defined function in the program.

• It expects the global names to be prefixed with the in the
generated assembly

• It will fail if the shell provides an argument count that does not
match that of the starting function in the source program

• A hard coded main to prevent the assembler from giving errors is
also available. Replace that part such that you start off with the
symbol t you supply

13

Generate main is provided

Compiler Construction PE6 Guidelines and hints

• A generate_stringtable function is provided which prints the following:

.data
intout: .asciz "%ld"
strout: .asciz "%s"
errout: .asciz "Wrong number of arguments"

• errout is only needed by main
• intout and strout are handy for printing numbers and strings

when translating ”print” statements
• The contents of the data section is still missing from the source.

Generate them them here with numbered labels like STR0:,
STR1:,...

• Note the we do not generate a .rodata section here as would be
expected – you can do this on Linux, but the macOS assembler
complains…

14

Generating the string table

Compiler Construction PE6 Guidelines and hints

• For global variables you need mutable memory. What can be
done for this is as follows:

• Emit a ”.data” section (mutable)
• Put labels under it for the global vars, such as ”x:” for

variable ”x”
• Place a 64-bit zero value at that address, for the program to

change at run time (the ’zero’ directive takes a byte count)
i.e. x: .zero 8

• In this way a reference to global variable ’x’ is translated as an
access to ’x’

15

Mutable Memory for Global Variables

Compiler Construction PE6 Guidelines and hints

• The first six arguments to a function reside in registers

• For convenient reference the call convention order is placed in a
static string array ’record[6]’ which contains strings with the
register names in order

• For function calls these registers will change values

• Copies of the arguments can be placed on stack as
the first thing a function does

• They then have an address of %rbp + 8*argument index

16

Arguments

Compiler Construction PE6 Guidelines and hints

• Accessing arguments takes place relative to the base pointer
%rbp from the bottom up

• Every argument and local variable consumes 8 bytes

• pushing an odd number creates a stack misalignment

• Pad it with 8 bytes if required (prevents crashing of generated
system calls (such as printf)

17

Stack alignment

Compiler Construction PE6 Guidelines and hints

• Treat the process as a stack machine when generating code
• Let %rax contain values and results

• Numbers translate into a movq of the constant into %rax
• Variables translate to copying their contents into %rax

• Operations are translated recursively
• Recursively generate subexpression 1 (put the result in %rax)
• Push result
• Step 1 for subexpression 2
• Combine the result with the top of stack element to obtain the

result of the operation
• Remove the temporary result of subexpression 1 from stack
• Result is in %rax and the stack is restored

• Be aware of the multiply and divide instructions

18

Expressions

Compiler Construction PE6 Guidelines and hints

• Using the stack approach, assignments are implemented by
simply generating the code for the RHS expression and moving
the result in %rax to the location of the assignment destination

19

Assignments

Compiler Construction PE6 Guidelines and hints

• Parameters to print are a list containing strings, numbers, identifiers and
expressions

• You can break this down to:
• Generate code to print the 1st element
• Same as above for the second and so on…
• Generate code to print a new line character

• The effect of the print statement is a concatenation of its parameters
• Iterate over the list of print items as follows:

• Strings: setup and call printf with parameters strout and the string
• Numbers: setup and call printf with intout and number
• Identifiers: setup and call printf with intout and the contents

of the identified address
• Expressions: Generate the expression, setup and call printf

with parameters intout and the contents of %rax

20

Printing

Compiler Construction PE6 Guidelines and hints

• We still need to generate code for:
• Local Variables
• Function calls
• Conditionals
• Loops
• Continue

21

More fun…

Compiler Construction PE6 Guidelines and hints

• Local variables are not accessed in the same way as the global
variables

• They go on the run-time stack.
• Their sequence number can be used to find their offset from

the base pointer

• Begin a function by creating space for local variables on the stack
• Remember the 16 byte stack alignment!

• Local variables were counted in the process of generating the
symbol table – use the sequence number as an index

• Otherwise local variables can go into expressions in the same
manner as global variables

22

Local variables

Compiler Construction PE6 Guidelines and hints

• They appear in expressions

• Generating function calls requires you to follow the x86-64 calling
conventions*:

• Put first 6 arguments into their designated registers
• additional arguments have to be put on the stack
• Call the function
• Restore the stack and return the result value in %rax

* you could define your own calling conventions, but this
 would just be extra effort and make interfacing to C code
 more difficult…

23

Function calls

Compiler Construction PE6 Guidelines and hints

• Relation is generate in same manner as arithmetic expressions

• Recursively generate code to evaluate the left expression,
leaving the result in %rax

• Put the result on the stack

• Generate code to evaluate the right expression

• Get previous result from the stack

• Compare and jump as needed

24

Conditionals (if and relations)

Compiler Construction PE6 Guidelines and hints

• The expression: ”if (a=b) then A else B” can be turned to

 evaluate a
 evaluate b
 compare
 jump−if–not−equal ELSE
 (code for "then" part A)
 jump ENDIF
ELSE:
 (code for "else" part B)
ENDIF:
 (rest of the program)

• This needs a numbering scheme – since the conditional statements
can be nested, we need a stack to push and pop the counter values
from the numbering scheme. This will track the nesting

25

Jumping

Compiler Construction PE6 Guidelines and hints

• These are also treated like conditionals
• while (condition) expression becomes:

WHILELOOP:
 evaluate condition
 jump−if-false ENDWHILE
 code for expression
 jump WHILELOOP
ENDWHILE:
 (rest of the program)

• Treat the loops in the same way as IFs for nesting
• i.e. implement a numbering scheme
• Use a separate stack for loops

26

Loops

Compiler Construction PE6 Guidelines and hints

• Continue-Statements skip directly to the condition evaluation of
the while loop

• If a shared counting scheme for WHILEs and IFs is used, then
the enclosing construct could be an IF

• With separate stacks, the index of the enclosing while loop is
on the stack top of the while stack

27

Continue

Compiler Construction PE6 Guidelines and hints 28

Linux vs. macOS

 .data
strout: .asciz "%s"
STR0: .asciz "Hello, world!"
 .text
 .globl main
main:
 call _hello
 ret
_hello:
 movq %rsp, %rbp
 subq $8, %rsp
 pushq %rbp
 leaq STR0(%rip), %rsi
 leaq strout(%rip), %rdi
 call printf
 movq $'\n', %rdi
 call putchar
 movq $0, %rax
 mov %rbp, %rsp
 ret

x86-64 assembler on Linux
 .data
strout: .asciz "%s"
STR0: .asciz "Hello, world!"
 .text
 .globl _main
_main:
 call _hello
 ret
_hello:
 movq %rsp, %rbp
 subq $8, %rsp
 pushq %rbp
 leaq STR0(%rip), %rsi
 leaq strout(%rip), %rdi
 call _printf
 movq $'\n', %rdi
 call _putchar
 movq $0, %rax
 mov %rbp, %rsp
 ret

x86-64 assembler on macOS (11.2)

Compiler Construction PE6 Guidelines and hints

• Tested against
• macOS 11.2 "Big Sur"
• macOS 10.14 "Mojave"

• We use .data as the section
for strings instead of .rodata
since the macOS assembler
doesn’t recognize .rodata

• Names of libc functions to be called and
main have to be prepended by an
underscore '_'

• Use '__' (two underscores) for your
own functions if this causes conflicts!

• Linking takes a bit more effort:

29

macOS differences .data
strout: .asciz "%s"
STR0: .asciz "Hello, world!"
 .text
 .globl _main
_main:
 call _hello
 ret
_hello:
 movq %rsp, %rbp
 subq $8, %rsp
 pushq %rbp
 leaq STR0(%rip), %rsi
 leaq strout(%rip), %rdi
 call _printf
 movq $'\n', %rdi
 call _putchar
 movq $0, %rax
 mov %rbp, %rsp
 ret

$ as -arch x86_64 -o prog.o prog.S
$ ld -arch x86_64 prog.o -o prog -lSystem -syslibroot \
 `xcrun -sdk macosx --show-sdk-path`

Compiler Construction PE6 Guidelines and hints 30

But… what’s with my shiny new M1???

prog.aot:
(__TEXT,__text) section
_main:
00001000 adrp x24, -14 ; 0xffffffffffff3000
00001004 add x24, x24, #0xf2b
00001008 adr x25, #0x10
0000100c stp x24, x25, [x21, #-0x10]!
00001010 str x24, [x4, #-0x8]!
00001014 bl _hello
00001018 ldr x22, [x4], #0x8
0000101c ldp x23, x24, [x21], #0x10
00001020 sub x25, x22, x23
00001024 cbnz x25, 0x102c
00001028 ret x24
0000102c bl 0x352c
_hello:
00001030 mov x5, x4
00001034 subs x4, x4, #0x8
00001038 str x5, [x4, #-0x8]!
0000103c adrp x7, -9 ; 0xffffffffffff8000
00001040 add x7, x7, #0x20
00001044 adrp x24, -14 ; 0xffffffffffff3000
00001058 bl 0x112c
…

Program translated to Aarch64 on macOS 11
• Apple has switched to

ARM (Aarch64) CPUs…
not all systems right now

• You can compile and link
x86-64 programs using the
Xcode command line tools

• They can also be executed
• It "simply works"!
• x86-64 code is statically

translated to Aarch64
code by the Rosetta 2
translation system!

• You could also try writing
an Aarch64 backend 🙂

