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• Part 1 
• Global String Table  
• Global variables 
• Functions 
• Function parameters 
• Arithmetic expressions 
• Arithmetic statements 
• Assignment statements 
• print statements 
• return statements 
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Topics related to code generation
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• Part 2 
• Local Variables  
• Function calls 
• Conditionals (if and relations) 
• While loops 
• Continue (Null statement) 
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Topics related to code generation
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Let’s look at "Hello, world"

def hello() 
begin 
    print "Hello, world" 
    return 0 
end

VSL source code "prog.vsl"

.data                  ; data section 
strout:  .asciz "%s" 
STR0:    .asciz "Hello, world !" 

.text                  ; text section 

.globl main ; main (not here) would be global 
_hello:     ; function hello with prepended '_’ 
    pushq %rbp         ; save frame ptr 
    movq  %rsp, %rbp   ; rsp -> rbp 
    movq  $STR0, %rsi  ; param 2 -> rsi 
    movq  $strout, %rdi; param 1 -> rdi  
    call  printf       ; call libc printf! 
    movq  $'\n', %rdi  
    call  putchar  
    movq  $0, %rax     ; return value in rax 
    movq  %rbp, %rsp   ; restore frame ptr 
    ret                ; return from hello 

x86-64 assembler "prog.s" on Linux

$ as -c -o prog.o prog.s 
$ cc -o prog prog.o

Assemble to .o file and link:

The "cc" line does not call the C 
compiler, but only the linker – it 
automatically links libc
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• Many x86-64 assembler examples for Linux on the net use the 
"nasm" assembler! 

• This has an incompatible syntax (intel syntax)! 
• Especially the order of parameters is reversed… 

• We use a version of the binutils assembler (in gcc or the clang 
project) 

• This uses Unix ("AT&T") assembler syntax
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Caution!



Compiler Construction PE6 Guidelines and hints 7

Is this a working program?
.data  
strout:  .asciz "%s" 
STR0:    .asciz "Hello, world !" 

.text 

.globl main 
main: 
    call _hello 
    ret 
_hello:  
    pushq %rbp  
    movq  %rsp, %rbp  
    movq  $STR0, %rsi  
    movq  $strout, %rdi  
    call  printf  
    movq  $'\n', %rdi  
    call  putchar  
    movq  $0, %rax 
    movq  %rbp, %rsp  
    ret 

$ as -c -o prog.o prog.s

$ cc -o prog prog.o 
/usr/bin/ld: prog.o:  
relocation R_X86_64_32S against  
`.data' can not be used when  
making a PIE object; recompile  
with -fPIE 
collect2: error: ld returned 1  
exit status

Many assembler examples you can 
find online use movq instructions to 
load the absolute address of a string 
(or other parameter). 

This is no longer allowed on x86-64!
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More fixes…
.data  
strout:  .asciz "%s" 
STR0:    .asciz "Hello, world !" 

.text 

.globl main 
main: 
    call _hello 
    ret 
_hello:  
    pushq %rbp  
    movq  %rsp, %rbp  
    leaq  STR0(%rip), %rsi  
    leaq  strout(%rip), %rdi  
    call  printf  
    movq  $'\n', %rdi  
    call  putchar  
    movq  $0, %rax 
    movq  %rbp, %rsp  
    ret 

$ as -c -o prog.o prog.s 
$ cc -o prog prog.o

$ ./prog 
Segmentation fault (core dumped) 
$

The correct way to load the address 
of a variable (here: string parameters 
for printf) is to use a rip-relative load 
instruction. 
This encodes the offset of the string 
to the current rip of the instruction  
and turns it into an absolute address. 

However, the program still crashes!
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A working program!
.data  
strout:  .asciz "%s" 
STR0:    .asciz "Hello, world !" 

.text 

.globl main 
main: 
    call _hello 
    ret 
_hello:  
    movq  %rsp, %rbp 
    subq  $8, %rsp 
    pushq %rbp 
    leaq  STR0(%rip), %rsi  
    leaq  strout(%rip), %rdi  
    call  printf  
    movq  $'\n', %rdi  
    call  putchar  
    movq  $0, %rax 
    movq  %rbp, %rsp  
    ret 

$ as -c -o prog.o prog.s 
$ cc -o prog prog.o

$ ./prog 
Hello, world!                   
$

The problem here is the stack alignment  
requirement of x86-64: The stack pointer  
%rsp must be aligned to a multiple of  
16 bytes when calling a libc function! 

%rsp is aligned to 16 bytes when entering  
main, but then call _hello pushes  
8 bytes to the stack. 

We fix the alignment by subtracting 8  
from %rsp
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• The main function 
• Global variables?  

• they need mutable memory 
• Arguments? 
• Expressions 
• Assignments 
• Expressions in print statements 
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What else do we need?
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• Remember the calling convention from the x86-64 assembler 
lecture on instruction set  

• The first 6 args go into registers %rdi %rsi %rdx %rcx %r8 %r9 
• Further args in the stack 
• Stack will need 16 byte alignment  

• All arguments (in VSL) are 64-bit integers 

• However, main(argc, argv) is called in a different way: 
• called from the libc startup code crt0  
• 1st argument: number of command line args (int argc) 
• 2nd argument: pointer to a list of char-pointers (char **argv)
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Main function
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• At runtime this has to be done:  
• Find the count of arguments  
• If there are some translate them from text to numbers  
• Put them in the right places for an ordinary call  
• Call the 1st function defined in the VSL source program  
• Take the return value from that and return it to the calling  

shell  
• Return to shell 
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A generic 'main' for VSL programs
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• A function to generate main will be supplied.  
• This will simply generate assembly to point to the symbol t that 

is the first defined function in the program.  

• It expects the global names to be prefixed with the in the 
generated assembly  

• It will fail if the shell provides an argument count that does not 
match that of the starting function in the source program  

• A hard coded main to prevent the assembler from giving errors is 
also available. Replace that part such that you start off with the 
symbol t you supply
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Generate main is provided
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• A generate_stringtable function is provided which prints the following:  
 
.data 
intout: .asciz "%ld" 
strout: .asciz "%s" 
errout: .asciz "Wrong number of arguments" 

• errout is only needed by main  
• intout and strout are handy for printing numbers and strings  

when translating ”print” statements  
• The contents of the data section is still missing from the source. 

Generate them them here with numbered labels like STR0:, 
STR1:,...  

• Note the we do not generate a .rodata section here as would be 
expected – you can do this on Linux, but the macOS assembler 
complains…
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Generating the string table
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• For global variables you need mutable memory. What can be 
done for this is as follows:  

• Emit a ”.data” section (mutable)  
• Put labels under it for the global vars, such as ”x:” for  

variable ”x”  
• Place a 64-bit zero value at that address, for the program to  

change at run time (the ’zero’ directive takes a byte count)  
i.e. x: .zero 8  

• In this way a reference to global variable ’x’ is translated as an  
access to ’x’ 
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Mutable Memory for Global Variables 
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• The first six arguments to a function reside in registers  

• For convenient reference the call convention order is placed in a 
static string array ’record[6]’ which contains strings with the 
register names in order  

• For function calls these registers will change values  

• Copies of the arguments can be placed on stack as  
the first thing a function does 

• They then have an address of %rbp + 8*argument index 
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Arguments
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• Accessing arguments takes place relative to the base pointer 
%rbp from the bottom up 

• Every argument and local variable consumes 8 bytes 

• pushing an odd number creates a stack misalignment  

• Pad it with 8 bytes if required (prevents crashing of generated 
system calls (such as printf) 
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Stack alignment
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• Treat the process as a stack machine when generating code  
• Let %rax contain values and results  

• Numbers translate into a movq of the constant into %rax 
• Variables translate to copying their contents into %rax  

• Operations are translated recursively  
• Recursively generate subexpression 1 (put the result in %rax)  
• Push result  
• Step 1 for subexpression 2  
• Combine the result with the top of stack element to obtain the 

result of the operation  
• Remove the temporary result of subexpression 1 from stack  
• Result is in %rax and the stack is restored  

• Be aware of the multiply and divide instructions 
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Expressions
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• Using the stack approach, assignments are implemented by 
simply generating the code for the RHS expression and moving 
the result in %rax to the location of the assignment destination 
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Assignments
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• Parameters to print are a list containing strings, numbers,  identifiers and 
expressions  

• You can break this down to:  
• Generate code to print the 1st element 
• Same as above for the second and so on… 
• Generate code to print a new line character 

• The effect of the print statement is a concatenation of its parameters  
• Iterate over the list of print items as follows:  

• Strings: setup and call printf with parameters strout and the string  
• Numbers: setup and call printf with intout and number  
• Identifiers: setup and call printf with intout and the contents  

of the identified address  
• Expressions: Generate the expression, setup and call printf  

with parameters intout and the contents of %rax 
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Printing
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• We still need to generate code for: 
• Local Variables 
• Function calls 
• Conditionals 
• Loops  
• Continue 
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More fun…
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• Local variables are not accessed in the same way as the global 
variables 

• They go on the run-time stack.  
• Their sequence number can be used to find their offset from 

the base pointer  

• Begin a function by creating space for local variables on the stack 
•  Remember the 16 byte stack alignment! 

• Local variables were counted in the process of generating the 
symbol table – use the sequence number as an index 

• Otherwise local variables can go into expressions in the same 
manner as global variables 
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Local variables
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• They appear in expressions 

• Generating function calls requires you to follow the x86-64 calling 
conventions*: 

• Put first 6 arguments into their designated registers  
• additional arguments have to be put on the stack 
• Call the function 
• Restore the stack and return the result value in %rax  

 
 
* you could define your own calling conventions, but this  
  would just be extra effort and make interfacing to C code 
  more difficult…
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Function calls
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• Relation is generate in same manner as arithmetic expressions  

• Recursively generate code to evaluate the left expression,  
leaving the result in %rax  

• Put the result on the stack  

• Generate code to evaluate the right expression  

• Get previous result from the stack  

• Compare and jump as needed 
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Conditionals (if and relations)
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• The expression: ”if (a=b) then A else B” can be turned to  
 
    evaluate a  
    evaluate b  
    compare  
    jump−if–not−equal ELSE  
    (code for "then" part A)  
    jump ENDIF 
ELSE: 
    (code for "else" part B) 
ENDIF: 
    (rest of the program)  

• This needs a numbering scheme – since the conditional statements 
can be nested, we need a stack to push and pop the counter values 
from the numbering scheme. This will track the nesting

25

Jumping
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• These are also treated like conditionals 
• while (condition) expression becomes:  

 
WHILELOOP: 
    evaluate condition  
    jump−if-false ENDWHILE  
    code for expression  
    jump WHILELOOP 
ENDWHILE:  
    (rest of the program)  

• Treat the loops in the same way as IFs for nesting 
• i.e. implement a numbering scheme 
• Use a separate stack for loops 
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Loops
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• Continue-Statements skip directly to the condition evaluation of 
the while loop  

• If a shared counting scheme for WHILEs and IFs is used, then 
the enclosing construct could be an IF  

• With separate stacks, the index of the enclosing while loop is 
on the stack top of the while stack  
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Continue
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Linux vs. macOS

    .data 
strout:  .asciz "%s" 
STR0:    .asciz "Hello, world!" 
    .text 
    .globl      main 
main: 
    call _hello 
    ret 
_hello: 
    movq  %rsp, %rbp 
    subq  $8, %rsp 
    pushq %rbp 
    leaq  STR0(%rip), %rsi 
    leaq  strout(%rip), %rdi 
    call  printf 
    movq  $'\n', %rdi 
    call  putchar 
    movq  $0, %rax 
    mov   %rbp, %rsp 
    ret

x86-64 assembler on Linux
    .data 
strout:  .asciz "%s" 
STR0:    .asciz "Hello, world!" 
    .text 
    .globl      _main 
_main: 
    call _hello 
    ret 
_hello: 
    movq  %rsp, %rbp 
    subq  $8, %rsp 
    pushq %rbp 
    leaq  STR0(%rip), %rsi 
    leaq  strout(%rip), %rdi 
    call  _printf 
    movq  $'\n', %rdi 
    call  _putchar 
    movq  $0, %rax 
    mov   %rbp, %rsp 
    ret

x86-64 assembler on macOS (11.2)
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• Tested against  
• macOS 11.2 "Big Sur" 
• macOS 10.14 "Mojave" 

• We use .data as the section 
for strings instead of .rodata 
since the macOS assembler 
doesn’t recognize .rodata 

• Names of libc functions to be called and 
main have to be prepended by an 
underscore '_' 

• Use '__' (two underscores) for your 
own functions if this causes conflicts! 

• Linking takes a bit more effort:
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macOS differences     .data 
strout:  .asciz "%s" 
STR0:    .asciz "Hello, world!" 
    .text 
    .globl      _main 
_main: 
    call _hello 
    ret 
_hello: 
    movq  %rsp, %rbp 
    subq  $8, %rsp 
    pushq %rbp 
    leaq  STR0(%rip), %rsi 
    leaq  strout(%rip), %rdi 
    call  _printf 
    movq  $'\n', %rdi 
    call  _putchar 
    movq  $0, %rax 
    mov   %rbp, %rsp 
    ret

$ as -arch x86_64 -o prog.o prog.S 
$ ld -arch x86_64 prog.o -o prog -lSystem -syslibroot \ 
      `xcrun -sdk macosx --show-sdk-path`
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But… what’s with my shiny new M1???

prog.aot: 
(__TEXT,__text) section 
_main: 
00001000 adrp x24, -14 ; 0xffffffffffff3000 
00001004 add  x24, x24, #0xf2b 
00001008 adr  x25, #0x10 
0000100c stp  x24, x25, [x21, #-0x10]! 
00001010 str  x24, [x4, #-0x8]! 
00001014 bl   _hello 
00001018 ldr  x22, [x4], #0x8 
0000101c ldp  x23, x24, [x21], #0x10 
00001020 sub  x25, x22, x23 
00001024 cbnz x25, 0x102c 
00001028 ret  x24 
0000102c bl   0x352c 
_hello: 
00001030 mov  x5, x4 
00001034 subs x4, x4, #0x8 
00001038 str  x5, [x4, #-0x8]! 
0000103c adrp x7, -9 ; 0xffffffffffff8000 
00001040 add  x7, x7, #0x20 
00001044 adrp x24, -14 ; 0xffffffffffff3000 
00001058 bl   0x112c 
…

Program translated to Aarch64 on macOS 11
• Apple has switched to 

ARM (Aarch64) CPUs…
not all systems right now 

• You can compile and link 
x86-64 programs using the 
Xcode command line tools 

• They can also be executed 
• It "simply works"! 
• x86-64 code is statically 

translated to Aarch64 
code by the Rosetta 2 
translation system! 

• You could also try writing 
an Aarch64 backend 🙂


