
Compiler Construction

Theoretical Exercise 4: IR
Practical Exercise 4

Michael Engel

Compiler Construction TE4 / PE4

1. In a DAG,
• Interior nodes always represent the operators.
• Exterior nodes (leaf nodes) always represent the names, identifiers or

constants.

2. While constructing a DAG,
• A check is made to find if there exists any node with the same value.
• A new node is created only when there does not exist any node with the

same value.
• This action helps in detecting the common sub-expressions and avoiding

the re-computation of the same.

3. The assignment instructions of the form x:=y are not performed unless
they are necessary.

2

TE4.1 Rules for constructing a DAG

Compiler Construction TE4 / PE4

Expression: (a + b) x (a + b + c)

Three Address Code for the given expression is:
T1 = a + b
T2 = T1 + c
T3 = T1 x T2

We observe:
• The common sub-expression

(a+b) has been expressed into
a single node in the DAG.

• The computation is carried out
only once and stored in the
identifier T1 and reused later.

3

TE4.1 Example for DAG construction

T1

T2

T3

Compiler Construction TE4 / PE4

Expression:
(((a + a) + (a + a)) + ((a + a) + (a + a)))

4

TE4.1 Example for DAG construction

Compiler Construction TE4 / PE4

a. Construct the DAG for the following expressions.
 Assume that the + operator is left-associative:
 a + b + (a + b)

Left-associative operators of the same precedence are evaluated in
order from left to right

5

TE4.1 DAGs

DAG for
a + b + (a + b)

+

+ +

AST for
a + b + (a + b)

a b ba

+

+

ba

TAC for
a + b + (a + b)

T1 = a + b
T2 = a + b
T3 = T1 + T2

Compiler Construction TE4 / PE4

b. Construct the DAG for the following expressions.
 Assume that the + operator is left-associative:
 a + b + a + b

6

TE4.1 DAGs

DAG for
a + b + a + b

+

+

ba

TAC for
a + b + a + b

T1 = a + b
T2 = T1 + a
T3 = T2 + b T1

T2
+T3

Compiler Construction TE4 / PE4

c. Construct the DAG for the following expressions.
 Assume that the + operator is left-associative:
 a + a + (a + a + a + (a + a + a + a))

7

TE4.1 DAGs

TAC for
a + a + (a + a + a + (a + a + a + a))

T1 = a + a
T2 = a + a (= T1)
T3 = T2 + a
T4 = a + a (= T1)
T5 = T4 + a
T6 = T5 + a
T7 = T3 + T6
T8 = T1 + T7

DAG for
a + a + (a + a + a + (a + a + a + a))

+

a

T1=T2=T4

+T3

+
T5

T6
+

+ T7
T8 +

Compiler Construction TE4 / PE4

Translate each of the following expressions into
• a syntax tree
• as well as quadruples
for the three-address code (TAC) IR as described in lecture 12:
a. a = b[i] + c[j]

8

TE4.2 Intermediate representations

0) t1 = b[i]
1) t2 = c[j]
2) t3 = t1 + t2
3) a = t3

=

b[i]

b i

c[j]

c j

+
a

Compiler Construction TE4 / PE4

Translate each of the following expressions into
• a syntax tree
• as well as quadruples
for the three-address code (TAC) IR as described in lecture 12:
b. a[i] = b*c - b*d

9

TE4.2 Intermediate representations

 0) t1 = b * c
 1) t2 = b * d
 2) t3 = t1 - t2
 3) a[i] = t3

=

b

a i

-a[i]

* *

bc d

Compiler Construction TE4 / PE4

Translate each of the following expressions into
• a syntax tree
• as well as quadruples
for the three-address code (TAC) IR as described in lecture 12:
c. x = f(y+1) + 2

10

TE4.2 Intermediate representations

 0) t1 = y + 1
 1) param t1
 2) t2 = call f
 3) t3 = t2 + 2
 4) x = t3

=

f +

1

func

y

+

2

x

Compiler Construction TE4 / PE4

Translate each of the following expressions into
• a syntax tree
• as well as quadruples
for the three-address code (TAC) IR as described in lecture 12:
d. x = *p + &y

11

TE4.2 Intermediate representations

0) t1 = *p
1) t2 = &y
2) t3 = t1 + t2
3) x = t3 *p

+
=

x

p

&y

y

Compiler Construction TE4 / PE4

a. Indicate where new basic blocks start. For each
basic block, give the line number such that the
instruction in the line is the first one of that block.
• B1 starts at line 1
• B1 ends at line 2 (line 3 is branch target)
• B2 starts at line 3
• B2 ends at line 6 (conditional branch)
• B3 starts at line 7
• B3 ends at line 7 (line 8 is branch target)
• B4 starts at line 8
• B4 ends at line 11 (conditional branch)
• B5 starts at line 12
• B5 ends at line 15 (conditional branch)
• B6 starts at line 16
• B6 ends at line 16 (line 17 is branch target)
• B7 starts at line 17 and runs until the end (line 18)

12

TE4.3 Basic blocks and TAC analysis

Department of Computer Science – IDI TDT4205 Compiler Construction

https://folk.ntnu.no/michaeng/tdt4205_21/
michael.engel@ntnu.no

Theoretical exercises
Spring 2021

Theoretical Exercises 4
Intermediate Representations

Please submit solutions on Blackboard by Friday, 12.03.2021 14:00h

4.1 DAGs (3 points)

Construct the DAG for the following expressions. Assume that the + operator is left-associative:

a. a + b + (a + b)

b. a + b + a + b

c. a + a + (a + a + a + (a + a + a + a))

4.2 Intermediate representations (4 points)

Translate each of the following expressions into

• a syntax tree

• as well as quadruples

for the three-address code (TAC) IR as described in lecture 12:

a. a = b[i] + c[j]

b. a[i] = b*c - b*d

c. x = f(y+1) + 2

d. x = *p + &y

4.3 Basic blocks and TAC analysis (3 points)

Consider the following TAC sequence:

1 a = input
2 b = input
3 t1 = a + b // line3
4 t2 = a * 2
5 c = t1 + t2
6 if a < c goto 8
7 t2 = a + b
8 b = 25 // line8
9 c = b + c

10 d = a - b
11 if t2 = 0 goto 17
12 d = a + b
13 t1 = b - c
14 c = d - t1
15 if c < d goto 3
16 c = a + b
17 output c // line 17
18 output d

B1

B2

B3

B4

B5

B6

B7

Compiler Construction TE4 / PE4

b. Give names B1, B2, ... for the program’s basic
blocks in the order the blocks appear in the given
listing. Draw the control flow graph making use of
those names. Do not put in the code into the
nodes of the flow graph, the labels Bi are
sufficient.

13

TE4.3 Basic blocks and TAC analysis

Department of Computer Science – IDI TDT4205 Compiler Construction

https://folk.ntnu.no/michaeng/tdt4205_21/
michael.engel@ntnu.no

Theoretical exercises
Spring 2021

Theoretical Exercises 4
Intermediate Representations

Please submit solutions on Blackboard by Friday, 12.03.2021 14:00h

4.1 DAGs (3 points)

Construct the DAG for the following expressions. Assume that the + operator is left-associative:

a. a + b + (a + b)

b. a + b + a + b

c. a + a + (a + a + a + (a + a + a + a))

4.2 Intermediate representations (4 points)

Translate each of the following expressions into

• a syntax tree

• as well as quadruples

for the three-address code (TAC) IR as described in lecture 12:

a. a = b[i] + c[j]

b. a[i] = b*c - b*d

c. x = f(y+1) + 2

d. x = *p + &y

4.3 Basic blocks and TAC analysis (3 points)

Consider the following TAC sequence:

1 a = input
2 b = input
3 t1 = a + b // line3
4 t2 = a * 2
5 c = t1 + t2
6 if a < c goto 8
7 t2 = a + b
8 b = 25 // line8
9 c = b + c

10 d = a - b
11 if t2 = 0 goto 17
12 d = a + b
13 t1 = b - c
14 c = d - t1
15 if c < d goto 3
16 c = a + b
17 output c // line 17
18 output d

B1

B2

B3

B4

B5

B6

B7

B1

B2
B3

B4
B5

B6

B7

Compiler Construction TE4 / PE4

• What needs to be done this time is a recursive traversal of the
constructed syntax tree

• Comparatively speaking, this should be simple
• At least there is far less typing :)
• There will be a bit more to do again on the remaining ones

• It is highly variable how comfortable everyone is with recursion

• We'll be traversing trees up, down, left, right and center for the rest, so
this is a chance to grow comfortable with it

14

PE4: Simplifying trees

Compiler Construction TE4 / PE4

• Some of our nodes are just there because it's easier to write the
grammar that way

• Afterwards, this kind of structure doesn't tell us anything about the
program

15

PE4: Single nodes (syntax artifacts)

no longer needed

Compiler Construction TE4 / PE4

• If you reach nodes like this in any kind of traversal:
• disassociate them
• connect the child
• and delete them

16

PE4: Single nodes (syntax artifacts)

grandparent

parent

child

grandparent

parent

child

Compiler Construction TE4 / PE4

• Syntax results in structures like these:

17

PE4: Lists

L

• We only need these:

L

L

L

L

Traversing the former is a lot of extra work if you only want the elements!

Compiler Construction TE4 / PE4

• You've found it when the structure doesn't repeat

18

PE4: Lists step 1: recur to the bottom

L

L

L

L

Compiler Construction TE4 / PE4

• When there are two or more children, remove redundant node and
keep the rest:

19

PE4: Lists step 2: on the way back

L

L

L

L

L

L

L
L

redundant

Compiler Construction TE4 / PE4

• When there are two or more children below, continue to remove
redundant node and keep the rest:

20

PE4: Lists step 3: continue…

L

L

L

L

L
L

redundant

Compiler Construction TE4 / PE4

• Again, if you recur to the bottom first and handle the rewriting during
the backtrack phase, the tree above reduces to the same basic cases
as the lowest levels:

21

PE4: Expressions

-

* 7

2 8

-

16 7

9

