
Department of Computer Science – IDI TDT4205 Compiler Construction

https://folk.ntnu.no/michaeng/tdt4205_21/
michael.engel@ntnu.no

Practical exercises
Spring 2021

Practical Exercises 3
VSL scanning and parsing

Please submit solutions on Blackboard by Friday, 05.03.2021 14:00h

Notice: Please submit solutions on Blackboard in groups of two or three students.

The practical exercises will be graded and count as part of your final grade.

In this practical exercise, we will construct the scanner and parser of our compiler. Please note that this and the
following practical exercises are more extensive than the first two, so please plan ahead in time so you can submit your
code before the deadline.

3.1 VSL Specification

The directory in the code archive PE3_skeleton.zip contains code for the starting point of a compiler for a slightly
modified 64-bit version of VSL (“Very Simple Language”), defined by Jeremy Bennett (Introduction to Compiling Tech-
niques, McGraw-Hill, 1990).

Its lexical structure is defined as follows

• Whitespace consists of the characters ’\t’, ’\n’, ’\r’, ’\v’ and ’ ’. It is ignored after lexical analysis.

• Comments begin with the sequence ’//’, and last until the next ‘\n’ character. They are ignored after lexical
analysis.

• The following strings are reserved words:

– def – function definition

– begin – start of a function or block

– end – end of a function or block

– return – exit from a function

– print – print to screen

– if then else – conditions

– while do continue – loop control

– var – variable declaration

• Basic operators are assignment (:=), the arithmetic operators ’+’, ’-’, ’*’, ’/’ and relational operators ’=’, ’<’, ’>’.

• In addition, these are the bitwise operators: ’<<’ (leftshift), ’>>’ (rightshift), ’∼’ (NOT), ’&’ (AND), ’ˆ’ (XOR) and ’|’
(OR).

• Numbers are sequences of one or more decimal digits (’0’ through ’9’).

• Strings are sequences of arbitrary characters other than ’\n’, enclosed in double quote characters ’”’.

• Identifiers are sequences of at least one letter followed by an arbitrary se- quence of letters and digits. Letters
are the upper- and lower-case English alphabet (’A’ through ’Z’ and ’a’ through ’z’), as well as underscore (’_’).
Digits are the decimal digits, as above.

https://folk.ntnu.no/michaeng/tdt4205_21/
mailto:michael.engel@ntnu.no

Department of Computer Science – IDI TDT4205 Compiler Construction

The syntactic structure is given in the context-free grammar on the last page of this document.
Building the program supplied in the archive PE3_skeleton.zip combines the contents of the src/ subdirectory into
a binary src/vslc which reads the standard input and produces a parse tree.
The structure in the vslc directory will be similar throughout subsequent problem sets, as the compiler takes shape.

a. Scanner (2 points)

Complete the lex scanner specification in src/scanner.l so that it properly tokenizes VSL programs.

b. Tree construction (4 points)

A node_t structure is defined in include/ir.h. Complete the auxiliary functions node_init and node_finalize
so that they can initialize/free node_t-sized memory areas passed to them by their first argument.

The function destroy_subtree should recursively remove the subtree below a given node, while node_finalize
should only remove the memory associated with a single node.

c. Parser (4 points)

Complete the yacc parser specification to include the VSL grammar, with semantic actions to construct the
program’s parse tree using the functions implemented above.

The top-level production should assign the root node to the globally accessible node_t pointer ’root’ (declared
in src/vslc.c).

Hint: To get an idea of the structure of a VSL program, you can find example programs in the vsl_programs/
directory. This is an example program (keywords are highlighted in bold):

// Approximate square root by the Newton/Raphson method for f(x) = x^2 - n
// f(x) = x^2 - n = 0
// f’(x) = 2x
// xn+1 = xn - (x^2-n) / 2x

def newton (n)
begin

print "The square root of ", n, " is ", improve (n, 1)
return 0

end

def improve (n, estimate)
begin

var next
next := estimate - ((estimate * estimate - n) / (2 * estimate))
if next - estimate = 0 then

// Integer precision converges at smallest int greater than the square
return next-1

else
return improve (n, next)

end

Department of Computer Science – IDI TDT4205 Compiler Construction

VSL grammar:

program → global_list
global_list → global | global_list global
global → function | declaration
statement_list → statement | statement_list statement
print_list → print_item | print_list ’,’ print_item
expression_list → expression | expression_list ’,’ expression
variable_list → identifier | variable_list ’,’ identifier
argument_list → expression_list | ε

parameter_list → variable_list | ε

declaration_list → declaration | declaration_list declaration
function → def identifier ’(’ parameter_list ’)’ statement
statement → assignment_statement | return_statement

| print_statement | if_statement
| while_statement | null_statement | block

block → begin declaration_list statement_list end
| begin statement_list end

assign_statement → identifier ’:=’ expression
return_statement → return expression
print_statement → print print_list
null_statement → continue
if_statement → if relation then statement
if_statement → if relation then statement else statement
whilestatement → while relation do statement
relation → expression ’=’ expression

| expression ’<’ expression
| expression ’>’ expression

expression → expression ’|’ expression
| expression ’^’ expression
| expression ’&’ expression
| expression ’<<’ expression
| expression ’>>’ expression
| expression ’+’ expression
| expression ’-’ expression
| expression ’*’ expression
| expression ’/’ expression
| ’-’ expression
| ’~’ expression
| ’(’ expression ’)’
| number | identifier | identifier ’(’ argument_list ’)’

declaration → var variable_list
printitem → expression | string
identifier → IDENTIFIER
number → NUMBER
string → STRING

	VSL Specification

