B NTNU | sioncindrecnoivay

Compiler Construction

Lecture 19-5: Very busy expressions
and summary of data flow analyses

Week of 2020-03-30
Michael Engel

Overview

« Data-flow analyses
* \ery busy expressions
* May- and must-analyses
« Common features and categorization

@ NTNU | S oy Compiler Construction 19-5: Very busy expressions

Busy expressions

* An expression e is busy at a program point if and only if
« an evaluation of e exists along some path ws,...,w;
starting at program point w;

« no operation of any operand of e exists before its
evaluation along the path (e.g., the operands are
unchanged)

If an expression is found to be busy at some program point,

it is definitely going to be used in some path following that
point

@ NTNU | S oy Compiler Construction 19-5: Very busy expressions 3

Very busy expressions

* An expression is very busy at some program point if it will
definitely be evaluated before its value changes
« At a program point wi, an expression is very busy if it is
busy along all paths starting at w;

« Dataflow analysis can approximate the set of very busy
expressions for all program points

* The result of that analysis can then be used to perform
code hoisting:
the computation of a very busy expression can be
performed at the earliest point where it is busy

« this optimization doesn’t (necessarily) reduce time, but
code space

@ NTNU | S oy Compiler Construction 19-5: Very busy expressions

Scienc

Busy expressions example

b+c is not very busy at loop entrance b+c is very busy at loop entrance
t=b+c; t=b+c;
for (.) { for (.) {
if (.) a=b+c; if (a>b+c) x=1;
else a=d+c; else x=0;
} }
| t=bec t=b+c
7 *V
‘a>b+c
¥ 1 ¥ N
'ia=b+c | a=d+c
N ¥ D W4
v | v |

@ NTNU | S oy Compiler Construction 19-5: Very busy expressions 5

Optimization: code hoisting

Dataflow analysis can approximate the set of very busy
expressions for all program points

If an expression is found to be very busy at wi, we can move
its evaluation to that node

The result of that analysis can then be used to perform an
optimization called code hoisting:.

« the computation of a very busy expression can be
performed at the earliest point where it is busy

it doesn’t (necessarily) reduce time, but code space
Useful for loop invariant code motion

If an expression is invariant in a loop and is also very busy,
we know it must be used in the future

Hence evaluation outside the loop must be worthwhile

@ NTNU | S oy Compiler Construction 19-5: Very busy expressions 6

Optimization example

b+c is very busy at loop entrance Evaluate b+c once before loop:
t=b+c; t=b+c;
for (.) { for (.) {
if (a>b+c) x=1; if (a>t) x=1;
else x=0; else x=0;
| t=b+c t=b+c
1 ¥
a>b+c a>t
¥ 1 ¥ %
X X L N 4
¢ | v |

© NTNU | Qggﬁfgﬁ‘;‘dUT”;zﬁfgﬁgg Compiler Construction 19-5: Very busy expressions

Very busy expressions: flow equations

« We can derive the following data flow equations:

o If nis final block
Outn=
N ()Inp otherwise
pesucc(n
Inn - (Outn‘Killn) U Genn
« Example:
1 Kill, Genn
[a>b 1 (%] 7]
2 g {pba)
Kz \ 4 3 g {a-b}
Xx=b-a yéb-a 4 g {b-a} 1
5 g {a-b} 2
: -3 5
y=a-b x=a-b 3
| 4

S)

Inl
In2

Outl
Out2 u {b-a}
In3 = {a-b}
In4 = Outs u {b-a}
In5 = {a-b}

Outl
Out2
Out3
Outs
Outh

In2 n In4
In3

/)

In5

1)

Inn Outn
{a-b,b-a} {a-b,b-a}
{a-b,b-a} {b-a}

{a-b})
{a-b,b-a} {b-a}
{a-b} @

@ NTNU | S oy Compiler Construction 19-5: Very busy expressions 8

A common analysis pattern

« Common pattern for the data-flow analyses we discussed:

| -n - (-n - Killn) U Genn

iﬂ

-l -

I Bl - Uorn
[] B - pred or succ

= IN or OUT

* Two choices exist:
 perform a forward or backward analysis? and
« whether the analysis computes U or N sets

© NTNU | Qggﬁfgﬁ‘;‘dUT”;zﬁfgfgg Compiler Construction 19-5: Very busy expressions

May and must analyses

An analysis is said to compute “may” facts if those facts
hold along some path in the control-flow graph

In contrast, an analysis is said to compute “must” facts if
those facts hold along all paths

Accordingly, the use of the join operation is U is called
"may" analysis and N is a "must"-analysis

We can now categorize our data-flow analyses according to
the data-flow equations used:

may must
£ reaching available
orward . :
definitions expressions
backward live very busy

variables expressions

@ NTNU | S oy Compiler Construction 19-5: Very busy expressions 10

