B NTNU | sioncindrecnoivay

Compiler Construction

Lecture 19—3: Reaching definitions

Week of 2020-03-23
Michael Engel

Overview

« Data-flow analyses
* Forward analyses: Reaching definitions
* Uninitialized variables analysis
« Copy propagation

@ NTNU | S oy Compiler Construction 19-3: Reaching definitions

Reaching definitions analysis

A definition of a variable x is a statement
which assigns a value to x

* Aunique label (representing the def) is
associated with each assignment

» different occurrences of the same
assignment become different definitions
« A definition d reaches a point p if there is a
path from the point immediately following d
to p such that d is not “killed” along that path
« A definition of a variable is killed between

two points when there is another definition of
that variable along the path

« 1l = r2 + 3 Kills previous definitions of r1

] di: y = 3

d2: x = y

T

dl is a reaching
definition for d2

‘le:y:=3

d2 : y := 4
- d3 : x =y

1

dl is no longer
a reaching
definition for d3
because d2

kills its reach

@ NTNU | S oy Compiler Construction 19-3: Reaching definitions 3

Reaching definitions vs. liveness

Reaching definitions is different from uses of variables or
computation of expressions

» labels are not associated with them and hence lexically same
computations are not treated as different entities for analysis

Liveness

« analyzes variables (e.qg., virtual registers)
« doesn’t care about specific users
Reaching defs

« analyzes operations, each def is different

Forward dataflow analysis as propagation occurs from
defs downwards

 liveness was backward analysis

@ N'TINU | soonegan ey ol Compiler Construction 19-3: Reaching definitions 4

Science and Technology

Data flow equations

A definition di € Defs of a variable x € Var reaches a
program point u if d; occurs on some path from Start to u and
is not followed by any other definition of x on this path

The data flow equations to define the required analysis are:

BI if nis Start block
Inn -
U Out, otherwise

pepred(n)
Out, = (In,-Kill,) u Genn,
where Inn, Out,, Gen,, Kill,, and BI are sets of definitions
« Note the use of u to capture the “any path” nature of data flow

« This is similar to liveness analysis except that now the
data flow is forward rather than backward

B NTNU ‘ ls\lcc?g\;]vegian University of

ce and Technology Compiler Construction 19-3: Reaching definitions 5

Assumptions for reaching def. analys.

« For every local variable x, it is assumed that a fictitious
definition x = undef reaches Entry(Start)

« This is required for the optimization of copy propagation
(— discussed later)

 If definition x = undef reaches a use of x, it suggests a
potential use before definition

* Whether this happens at run time depends on the actual
results of conditions along the path taken to reach the
program point.

* Gen, contains downwards exposed definitions in n whereas
Kill, contains all definitions of all variables modified in n

 Thus Gen, € Kill, for reaching definitions analysis

@ NTNU | S oy Compiler Construction 19-3: Reaching definitions 6

Example

 Labels of assignments

 used to represent the
definitions in the programs

e Definitions a0, b0, c0, and d0
represent the special
definitions a=undef,
b=undef, c=undef, and
d=undef respectively

» Since the confluence

consist of variable names and
an instance number / XV

operation is u, the initial value
at each program pointis @

© NTNU | ?gg;“fegf;‘dUT”;zﬁ;ﬂfggj Compiler Construction 19-3: Reaching definitions

Reaching definitions anaIyS|s results

Blo . Local Global information b1 b=4
ck information

al: a=b+c|

Iteration #1 Changed values 'dl: d=a*b

Genn Kill, in iteration #2

Inn Out, Inn Out,

g1 (@tbt, 202 a0p0, (a1,

d1} c0,d0} ¢0,d1}

d0,d1,d2}
{albl, {alb2, , '
B2 {2y {bObTL2} 041y co.d1) b2: b=a-c
a1,b1, '
@albl, {alpl, & {al,b1,c1,
B3 {1} {00102} 541y o141 Cgfgg}z d1,d2)

{a1b1, {al,b1, {alb1, {albl,c2,
c1,d1} ¢2,d2} c1,d1,d2} d1,d2}

{a1,b1, {a1bl, {albi,
c1,d1} c¢1,d2} c1,d1,d2}

{a1,b1, {al,b1,
c1,d1} c¢1,d2)

B4 {c2} {c0,c1,c2}

B5 {d2} {d0,d1,d2}

B6 @ @

{a1,b1, {a1,b1,
B7 @ @ c1,c2, c1,c2,
d1,c2} d1,c2}
{a1,b1, {a1,b1,
b2,c0, b2,c0,
cl,c2, c1,c2,
d1,d2} d1,d2}

© NTNU | ?gg;“feg':;‘dUT”;zﬁ;ﬂt,ggj Compiler Construction 19-3: Reaching definitions

B8 @ @

Reaching definitions anaIyS|s results

Blo Local
ck information
Genn Killn
Inn
{a0,a1,
B1 {a1,b1, b0, b1.b2, {a0,b0,
At dodt,dzy 040
{a1,b1,
B2 (b2} {bO,b1,b2} c0.91)
{a1,b1,
B3 {c1} {c0,c1,c2} c0,d1)
{a1,b1,
B4 {c2} {c0,c1,c2} c1.d1)
{a1,b1,
B5 {d2} {dod1d2} Tl
{a1,b1,
B6 o 2 c1.d1)
{a1,b1,
B7 @ @ c1,c2,
d1,c2}
{a1,b1,
B o o %%
d1,d2}
@ NTNU |

Global information

Iteration #1

Outn

{a1,b1,

c0,d1}

{a1,b2,

c0,d1}

{a1,b1,

c1,d1}

{a1,b1,

c2,d2}

{a1,b1,

c1,d2)

{a1,b1,
c1,d2}

{a1,b1,

c1,c2,
d1,c2}

{a1,b1,

b2,cO0,
c1,c2,
d1,d2}

Norwegian University of
Science and Technology

Changed values
in iteration #2

Inn Outn
B3
c=b+c

ibl: b=k
al: a=b+c
dl: d=a*b

|b2: b=a

_A/ X
N B4 d2 d= a+b

: c=a*b | * B6

{a1,b1,

c0,c1,c2, {a;ibgé(}ﬂ’
d1,d2} ’
{a1,b1, {a1,b1,c2,
c1,d1,d2} d1,d2}
{a1,b1,

c1,d1,d2}

def|n|t|ons reachlng

| Exit(n6) & Exit(n7) in
iteration 1 have to be

propagated to Entry (n5)
& Entry(n3), requiring
an additional iteration

f(b+c
s |~
%
b+c)

Compiler Construction 19-3: Reaching definitions

def-use & use-def chains

« Reaching definitions analysis
is used for constructing use-
def and def-use chains which
connect definitions to their
uses

 These chains facilitate
several optimizing
transformations

Example:
def-use chain for variable a

« Chains always start at a

Definition c0

represents
c0: c=undef Bl c=undef
bl: b=4
al: a=b+c
f&;ma?h*b

'b2: b=b-c

i B8
label (h(b-c)
f(b+c)
@ NTNU | S oy Compiler Construction 19-3: Reaching definitions 10

def-use & use-def chains

c0: c=undef Bl

b \b\ti
al: \a=b+c
dl: *b

Example:
def-use chain for variable c

 Definition c0 reaches
some uses of c

» This suggests a potential

use before any assigning
meaningful value

 This, in turn, makes

variable b potentially

undefined

@ N'TINU | soonegan ey ol Compiler Construction 19-3: Reaching definitions

Science and Technology

11

Bl

Finding undefined var's

rc0: c=undef

b-\b\li
al: \a=b+c
dl: *b

 Definition c0 reaches some
uses of c

 This, in turn, makes variable b
potentially undefined

« Transitive effects of
undefined variables are

captured by possibly

uninitialized variables

analysis

« Possibly uninitialized variables
analysis is non-separable —
whether a variable is possibly
undefined may depend on
whether other variables are
possibly undefined.

@ NTNU | S oy Compiler Construction 19-3: Reaching definitions

12

Possibly uninitialized variables apalysis

rcO: c=undef

b \b\ti
al: \a=b+c
dl: *b

* For definition xi of variable x,
reaching definitions analysis
discovers a set of definition
reaching paths:

» a sequence of blocks
(b1,b2,...,bk) which is a prefix of
some potential execution path
starting at b1 such that:

* bl contains the definition xi

* bk is either End or contains a
definition of x

* no other block in the path
contains a definition of x

« Example: some definition reaching
paths for variable c are:
(B4,B7,B3), (B3,B5,B6,B7,B3) and

(B3,B5,B6,B5,B6,B7,B8)

Norwesian University of _ _ . _
@ NTINU | S Tecimoioss Compiler Construction 19-3: Reaching definitions 13

Reaching def. for copy propagation

* Another application of reaching definitions analysis is in
performing copy propagation

« A definition of the form x=y is called a copy because it
merely copies the value of y to x

 When such a definition reaches a use of x, and no other
definition of x reaches that use then the use of x can be
replaced by y

© NTNU | Qggﬁfeg':;‘dUT”;gﬁfg,ggj Compiler Construction 19-3: Reaching definitions

14

Copy propagation

Example:

* Copy b=4in block Bl is
the only definition which

reaches the uses of b in
blocks B3, B4, B5, B6 and
B7

 Thus all these uses can
be replaced by the
constant 4

@ NTNU | sanetandrecnoiogy

~1B8

Compiler Construction 19-3: Reaching definitions

15

Copy propagation

(CO: c=undef
bl: b=4
* |In the above example, the right hand al: a=b+c
side (RHS) value is constant di: d=a*b

« With variables on the RHS, e.g. x=y, replacing the uses of
x by y requires an additional check to ensure that the value of
y has not been modified along the path from copy to use

A variant of our reaching definitions analysis can accomplish this:
« We restrict the defs to copies, a def x=y is contained in:

* Gen, if it is downwards exposed in n, i.e. not being followed
by a definition of x or y, and in

« Killy, if n contains a definition of x ory

« We can now perform reaching definitions analysis
 If one def reaches a use, we can perform copy propagation

© N'TINU | Sonwegian University of Compiler Construction 19-3: Reaching definitions 16

nce and Technology

Use of copy propagation

 This copy propagation optimization does not improve the
program on its own

« But it has the potential of creating dead code:

* When copy propagation is performed using x = vy, itis
possible that all uses of x are replaced by y thus making
x dead after the assignment

* Thus this assignment can be safely deleted

References

[1] Allen, Frances E. and Cocke, John. A catalogue of optimizing transformations.
RC 3548, IBM T. J. Watson Research Center, Yorktown Heights, N.Y., September 1971

@ NTNU | S oy Compiler Construction 19-3: Reaching definitions 17

