B NTNU | sioncindrecnoivay

Compiler Construction

Lecture 19-2: Live variable analysis

Week of 2020-03-16
Michael Engel

Overview

« Data-flow analyses

« Backward analyses: Live variable analysis

@ NTNU | sanetandrecnoiogy

Compiler Construction 19-2: Live variables analysis

2

Live variable analysis

What is Live Variable Analysis?

« For each variable x we determine:

Where is the last program point p at which a specific
value of x is used?

* |In other words:
For x and a program point p determine if the value of x at
p can still be used along some path starting at p

* Ifso, xis live at p
* If not, x is dead at p

* Live variable analysis must take control flow into account
= we need to solve a data flow problem

@ NTNU | S oy Compiler Construction 19—2: Live variables analysis

3

Live variable analysis: example

At point po variable x is live:

* There is a path to p: where the
value at po is used

* Beyond px towards p: the value
of x is no longer needed and is dead

For each variable and for each
program point, we have to observe: |

H X
* Where is the last program point
beyond which the value is not used?

 Trace back from uses to definitions and observe
the first definition (backwards) that reaches that use

 That definition kills all uses backwards of it

@ NTNU | S oy Compiler Construction 19—2: Live variables analysis 4

Gen and kill, in and out sets

- Avariable is live at a point p if its | Out set |

value is used along at least one path

* A use of x prior to any definition in a
basic block means x must be alive

* A definition of x in a block B prior to any
subsequent use means previous uses must be dead

« Accordingly, we obtain:
* Gen: set of variables used in B
« the upward exposed reads of variables in block B
* Kill: set of variables defined in B
Outy, = U Ins Inp = Usep U (Outy - Defy)

Sesucc(b)

@ NTNU | S oy Compiler Construction 19—2: Live variables analysis

Implementing live variables analysis

* I|nitialize Inp to the empty set
« Compute Gen/Use and Kill/Def for each basic block

« Tracing backwards from the end of the block to the
beginning of the block

« Initialize last instruction’s Out; to the empty set
« Apply Ini= Use; U (Outi- def)
 |teratively apply relations to basic block until convergence
« Outy=U Ins
sesucc(b)
* Inp=Use, U (Outy - defy)

 With Outp, use relations at instruction level to determine the
live variables after each instruction

© N'TINU | Sonwegian University of Compiler Construction 19—2: Live variables analysis

nce and Technology

6

Compute use and def for a basic block

4

.f =a+1 Use = {a}
"‘ Def = {t}
b =t Use = {t}

Def = {b}

In = Use U (Out- def)
if (a=b) goto L, Use = {a,b}
Def = {}

v

Ini= Usei U (Out;- def)

Out={}

@ NTNU | S oy Compiler Construction 19-2: Live variables analysis 7

Compute use and def for a basic block

s

.f =a+1 Use = {a}
"‘ Def = {t}
b =t Use = {t}

Def = {b}

In ={a,b}U ({}-{}) = {a,b}
if (a=b) goto L, Use = {a,b}
Def = {}

.

Ini= Usei U (Out;- def)

Out={}

@ NTNU | S oy Compiler Construction 19-2: Live variables analysis 8

Compute use and def for a basic block

s

t=a+1 Use = {a}
| Def = {t}
In = Use U (Out- def)
b =1t Use = {t}
Def = {b}
Out = {a,b}
if (a=b) goto L, Use = {a,b}
Def = {}
" Out=
3 {}

Ini= Usei U (Out;- def)

@ NTNU | S oy Compiler Construction 19—2: Live variables analysis 9

Compute use and def for a basic block

s

.f¥ a + 1 Use = {a}_
| Def = {t}
In ={t} U ({a,b} - {b}) = {a,t}
b =1t Use = {t}
Def = {b}
Out = {a,b}
if (a=b) goto L, Use = {a,b}
Def = {}
; Out={}
¥

Ini= Usei U (Out;- def)

@ NTNU | S oy Compiler Construction 19—2: Live variables analysis 10

Compute use and def for a basic block

s

t a1 Uso = {a}_ ‘ In = Use U (Out- def)
| Def = {t}
Out ={a,t}
b =1t Use = {t}
Def = {b}
Out = {a,b)
if (a=b) goto L, Use = {a,b}
Def = {}
* Out=
3 {}

Ini= Usei U (Out;- def)

@ NTNU | S oy Compiler Construction 19—2: Live variables analysis 11

Compute use and def for a basic block

s

t = a + 1 Use = {a} | In={a}U ({a,t} - {t}) = {a}
| Def = {t}
Out = {a,t}
b =1t Use = {t}
Def = {b}
Out = {a,b}
if (a=b) goto L, Use = {a,b}
Def = {}
: Out =
3 {}

Ini= Usei U (Out;- def)

@ NTNU | S oy Compiler Construction 19—2: Live variables analysis 12

Compute use and def for a basic block

s

t -3+ 1 Use {a}_ ‘ In={a}U ({a,t} - {t}) = {a}
| Def = {t} 4
Out = {a,t}
b =1t Use = {t}
Def = {b}
Out = {a,b)
if (a=b) goto L, Use = {a,b}
Def = {}
: out={}
v
InUse;i= Use; U (OutUse;- defUse)) |Usep = {a}

@ NTNU | S oy Compiler Construction 19—2: Live variables analysis 13

Compute use and def for a basic block

s

.f =a+1 Use = {a}
"‘ Def = {t}
b =t Use = {t}

Def = {b}

if (a=b) goto L, Use = {a,b}
Def = {}

.

InDefi; = Def; U (OutDef)

OutDef = {}

@ NTNU | S oy Compiler Construction 19-2: Live variables analysis 14

Compute use and def for a basic block

s

.f =a+1 Use = {a}
"‘ Def = {t}
b =t Use = {t}

Def = {b}

InDef = Def U (OutDef) = {}
if (a=b) goto L, Use = {a,b}
Def = {}

.

InDefi; = Def; U (OutDef)

OutDef = {}

@ NTNU | S oy Compiler Construction 19-2: Live variables analysis 15

Compute use and def for a basic block

s

.f =a+1 Use = {a}
! Def = {t}

InDef = Def U (OutDef) = {b}
b =t Use = {t}
Def = {b}
OutDef = {}
if (a=b) goto L, Use = {a,b}
Def = {}

.

InDefi; = Def; U (OutDef)

OutDef = {}

@ NTNU | S oy Compiler Construction 19—2: Live variables analysis 16

Compute use and def for a basic block

— - & - InDef = Def U (OutDef)
t=a+1l Use = {a} |
| Def = {t} = {t}U{b}
OutDef = {b}
b =1t Use = {t}
Def = {b}
OutDef = {}
if (a=b) goto L, Use = {a,b}
Def = {}
: OutDef = {)
¥

InDefi; = Def; U (OutDef)

@ NTNU | S oy Compiler Construction 19-2: Live variables analysis 17

Compute use and def for a basic block

S~ - & - InDef = {t, b}
t=a+1 Use = {a} | _
| Def = {t]
OutDef = {b}
b =1t Use = {t}
Def = {b}
OutDef = {}
if (a=b) goto L, Use = {a,b}
Def = {}

v

OutDef = {}

InDef; = Def; U (OutDef) | Defp = {t,b}

@ NTNU | S oy Compiler Construction 19—2: Live variables analysis 18

Liveness semantics

Assuming that variable x is live at the exit of basic block n,
there are four possibilities with four distinct semantics:

Case Local information Effect on liveness
1 x ¢ Genp x ¢ Killn Liveness of x is unaffected in block n
2 x € Gennp x ¢ Killn Liveness of x is generated in block n
3 x ¢ Genp x € Kill, Liveness of x is killed in block n
4 <« < Gen, < < Kill- Liveness of x is unaffected in block n

in spite of x being modified in n

- Variable x is live at Entry(n) in cases 1, 2, and 4 but
the reason for its liveness is different in each case

* Case 4 captures the fact that the liveness '3 :=b+cl
of x is killed in n but is regenerated within n L

@ NTNU | S oy Compiler Construction 19—2: Live variables analysis 19

Example

Var = {a,b,c,d}
Defs = {al1,b1,b2,c1,c2,d1,d2} ‘; ¥
Expr = {axb,a+b,a-b,a-c,b+c} / {1 B3

* Variable c is contained in
both Gens and Kills

© NTNU | ?gg;“;’-egf;‘dUT”;Zﬁmggj Compiler Construction 19-2: Live variables analysis 20

Example: trace of liveness analysis

b1 b=4
1: a=b+c|
Local . . q
Block information Global information d1: d= a*b
Iteration #1 Iteration #2
Genn Killy

Outn Inn Outn Inn

B8 {abc} o g f{abc} o {a,b,c}

B7 {a,b} 1] {a,b,c} {a,b,c} {a,b,c} {a,b,c}

B6 {b,c} 1) {a,b,c} {a,b,c} {a,b,c} {a,b,c}

B5 {ab} {d} {ab,c} {a,b,c} {a,b,c} {a,b,c}

B4 {ab} {c} {ab,c} {ab} {ab,c} {ab}

B3 {b,c} {c} {ab,c} {a,b,c} {a,b,c} {a,b,c}

B2 {a,c} {b} {a,b,c} {a,c} {ab,c} {a,c}

B1 {c} {ab,d} {a,b,c} {c} {ab,c} {c}

@ NTNU | S oy Compiler Construction 19—2: Live variables analysis 21

Example: trace of liveness analysis

Block

B8

B7

B6

B5

B4

B3

B2

B1

. Local_ Global information
information

Iteration #1 Iteration #2
Gen, Kill,

Outn Inn Out, Inn
{a,b,c} o g f{abc} o {ab,c}
{a,b} 1] {a,b,c} {a,b,c} {a,b,c} {a,b,c}
{b,c} 1) {a,b,c} {a,b,c} {a,b,c} {a,b,c}
{a,p} {d} {a,b,c} {a,b,c} {a,b,c} {a,b,c}
{a,p} {c} {a,b,c} {a,b} {a,b,c} {a,b}
{b,c} {c} {ab,c} {a,b,c} {a,b,c} {a,b,c}
{a,c} {b} {a,b,c} {a,c} {ab,c} {a,c}
{c¢ {ab,d} {ab,c} {c} {abc} {c}

The data flow values computed
in iteration #2 are identical to the
values computed in iteration #1
= convergence

The result would be different if
we had used the universal set
(here: {a,b,c,d}) as initialization.
Then, d would have been live at
Exit(B7) whereas d is not used
anywhere in the program

@ NTNU | S oy Compiler Construction 19—2: Live variables analysis 22

Liveness paths

* For a given variable x, liveness analysis discovers a set of
liveness paths

* Each liveness path is a sequence of blocks (Bi, Ba,..., Bk)
which is a prefix of some potential execution path starting
at B1 such that:

* By contains an upwards exposed use of x, and
*x is either Start or contains an assignment to x, and
* no other block on the path contains an assignment to x

@ NTNU | S oy Compiler Construction 19—2: Live variables analysis 23

Liveness paths

—B1
ibl: b=4
al: a=b+c
* Some liveness paths for dl: d=a*b
variable c in our example
program are: et cobic]™
| B2 B ’2
(B4,B7,B8), bz: 'b=a-c d2 d=é+i5
(B3,B5,B6,B7,B8), e L -% B
, |£(a-t) —
and | \ £l
gtan) ™
v/
}h(a-c) —]B8
lf(b+c)

@ NTNU | S oy Compiler Construction 19-2: Live variables analysis

Applications of liveness analysis

* Finding uninitialized variables:
«Languages like C typically do not define

the behavior of programs with
uninitialized variables

* This definition reaches...™ |
this use... gl

but the def might not get executed!

« Common source of security problems [2]

@ NTNU | S oy Compiler Construction 19—2: Live variables analysis

25

Applications of liveness

 Dead code elimination:

*If x is not live at a exit of an assignment
of x, then this assignment can be safely
deleted

* Discover useless store operations

* At an operation that stores v to memory,
if v is not live then the store is useless

* In the example, the assignments

global=1 and global=3 assign to dead
variables

i is not live at the end of £, so the
assignment can be eliminated

int global;
lvoid £ ()
{
int 1i;
// dead store:
i=1;
// dead store:

global = 1;
global = 2;
return;
// unreachable:
global = 3;
|int global;
void £ ()
{
' global = 2;
. return;
;

@ NTNU | S oy Compiler Construction 19—2: Live variables analysis 26

Applications of liveness analysis

* Register allocation:

« If a variable x is live at a program point, the current value
of x is likely to be used along some execution path and
hence x is a potential candidate for being allocated a
register

* On the other hand, if x is not live, the register allocated to
x can be allocated to some other variable without the
need of storing the value of x in memory

* More details on register allocation later

@ NTNU | S oy Compiler Construction 19—2: Live variables analysis 27

Dead variables analysis

« Avariable is dead (i.e., not live) if it is dead along all paths

* We can perform dead variables analysis instead of live
variables analysis

* The interpretation of Inn and Out, changes

o If a variable is contained in In, or Out,, it is dead instead of
being live

References

[1] J. C. Beatty (1975).
An algorithm for tracing live variables based on a straightened program graph,
International Journal of Computer Mathematics, 5:1-4, 97-108,
DOI: 10.1080/00207167508803104

[2] http://cwe.mitre.org/data/definitions/457.html

@ NTNU | S oy Compiler Construction 19—2: Live variables analysis 28

http://cwe.mitre.org/data/definitions/457.html

