

Compiler Construction

Lecture 18: Data flow analysis framework

2020-03-10 Michael Engel

Overview

- Data-flow analysis
 - partial orders
 - lattices
 - operators

CFGs revisited

- We defined control flow graphs in terms of
 - Operations
 - Basic blocks of operations (that end in jumps)
 - Program points
- As an example, we looked at live variables...
 - (variables that may still be used before their next assignment)
- ...how they can be found by traversing a control flow graph...
 - Collect them in sets attached to program points
 - Find out how instructions affect the sets attached to the neighboring program points
 - Find out how to handle the sets at points where several control flows meet
- ...and how the CFG captures every possible execution of the program (as well as a few impossible ones, to stay on the safe side)

Final result of analyzing liveness

 We have managed to determine the liveness of every variable for every program point

General procedure

- Associate program points with sets that represent the information we are interested in
- Figure out how the sets change
 - As a function of instructions
 - As a function of meeting points between control paths
- Make a safe assumption at an initial point
- Work out the function throughout the graph
- Repeat until the sets stop changing
- But... will the sets ever stop changing?
 - Also, does the analysis get better by repeated application?
 (we'll talk about this later)

Convergence

Will this scheme always work?

Some conditions have to hold:

- If the sets have a maximum and minimum possible size and
- if the changes we make either only add or remove elements
- ⇒ they will necessarily reach a point where they stop changing
- ⇒ analysis ends there
- This is obviously a useful property, otherwise the compiler might run forever...

Precision

How good is the outcome of the analysis?

We call an analysis **precise**:

- If it reflects all control flows the program can/will take and
- none of the control flows it will not take
- A perfectly precise analysis cannot be derived by a computer
- Nevertheless, it is still useful to know if we can assess why quality is lost and how much
 - We need a bit of mathematical background for this...

Sets and orders

- Some sets have a (natural or implied) order relation, e.g.
 - The set of natural numbers: 1 < 2 < 3 < 4 < ...
 - The ordering relation here is "less than", written as '<'
 - Order defined using axioms and a rule system (Peano)
 - Letters in the alphabet: $a < b < c < ... < z < x < \emptyset < a$
 - Lexicographical order by definition (from Phoenician alphabet)
- These are total orders
 - they put any pair of set elements in relation to each other
- Other sets do not have an order relation
 - e.g. complex numbers: is 1 < 1i?
- Some sets let you pick a consistent order

Partial order relations

- A *partial order* (P, □) contains
 - a set of 'things' (elements)
 - a partial order relation □
- Properties of the partial order relation
 - reflectivity: x ⊆ x
 - antisymmetry: if $x \sqsubseteq y$ and $y \sqsubseteq x \Rightarrow x = y$
 - transitivity: if $x \sqsubseteq y$ and $y \sqsubseteq z \Rightarrow x \sqsubseteq z$
- For a *total order* it must hold that for every x,y: either x⊑y or y⊑x
- In partial orders, not every pair needs to be comparable

An example

- We can partially order food ingredients as a (stupid?) example
- Let x y denote that x is an ingredient of y
 - flour ⊑ bread
 - flour □ pasta

 - yeast □ bread
 - pasta ⊑ lasagna

Visualizing relations: Hasse diagrams

 We can graphically represent the example order (making use of transitivity) like this:

- Here, it is implied that yeast goes into making a sandwich via the bread connection
- There are pairs here which are not comparable using our ingredient relation

Least Upper Bound (LUB)

 The least upper bound of an element pair is the first thing they have in common when going up the order

Greatest Lower Bound (GLB)

The greatest lower bound of an element pair is the first thing they
have in common when going down the order

Maximum and minimum

- Partial orders do not necessarily have a unique top or bottom
 - GLB(yeast, eggs) does not exist
 - LUB(sandwich, pasta) neither

Lattices

- A partial order is a *lattice* if *any finite* (non-empty) subset has a LUB and a GLB
- Example: the natural numbers ordered by '<' form a lattice
 - for any finite subset:
 - LUB is the biggest number in the set
 - GLB is the smallest number in the set
- The natural numbers have a unique bottom element (⊥)
 - it's the number zero
- They do not have a unique top element (⊤)
 - since there are countably infinite many natural numbers
- You can pick infinite subsets
 - e.g. even numbers, primes, numbers > 42, ...

Complete lattices

- A lattice is called complete if any (non-empty) subset has a LUB and a GLB
- These have top ("biggest") and bottom ("smallest") elements
 - For a complete lattice (L, □)
 - \top = LUB(L)
 - \perp = GLB(L)
- Every finite lattice (lattice with a finite number of elements) is complete

Meet and join relations

- Just to have some symbols that are independent of how we choose the order, define two operators
- "Meet"

•
$$x \sqcap y = GLB(x,y)$$

- "Join"
 - $x \sqcup y = LUB(x,y)$
- These can be naturally extended to sets of more elements:
 - $x \sqcap y \sqcap z = GLB(GLB(x,y),z)$

Power sets

- Consider the set {a,b,c}
- Its Cartesian product with itself is the set of all pairs:
 - {{a,b},{a,c},{b,c}}
- Its power set is:
 - {ø, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, {a,b,c}}

The power set gives a partial order by the subset relation ⊆

The power set lattice

- Ordering relation: ⊆
- Meet operator: ∩
- Join operator: ∪
- Top: {a,b,c}
- Bottom: Ø

We can turn it upside down

Just switch the operators around:

- Ordering relation: ⊇
- Meet operator: ∪
- Join operator:
- Top: ∅
- Bottom:{a,b,c}

So, how can we use this theory?

Analysis of live variables

- If we take {a,b,c} to be the three variables in a short program, every possible choice of live variables corresponds to a point in the power set lattice
- If we can express the effect of statements as a transfer function from one place to another in the lattice, we can argue that the set attached to a program point only moves in one direction wrt. the order when it is applied repeatedly
- That means it will either end up at the top, or stop somewhere before it

Transfer functions

- This is just a formalization of the idea that the instruction between two program points is a function from one place in the lattice to another
- For an instruction I:
 - Forward analysis: out[I] = F(in[I])
 - Backward analysis: in[I] = F(out[I])
- Accordingly, for basic blocks, the function of a block B is simply the nesting of the functions of B's component instructions I_{1...}I_n:
 - Forward:

out[B] =
$$F_1(F_2(...(F_{n-1}(F_n(in[B])...)))$$

Backward:

```
in[B] = F_1(F_2(...(F_{n-1}(F_n(out[B])...)))
```


Where paths meet again

- For the points where multiple control flows intersect:
 - Forward: $in[B] = \sqcap \{out[B'] \mid B' \text{ is a predecessor of } B\}$
 - Backward: out[B] = □ {in[B'] | B' is a successor of B}
- If we really wanted to, we could use

 ⊔ instead and reverse the orders
 - With □, transfers in the lattice move toward its bottom
 - With □, transfers in the lattice move toward its top

Another application of Hasse diagrams

...no food involved, example from hardware modelling (from [2])

 The VHDL hardware description language allows for the definition of user-defined value sets, e.g. to describe signal strength

model components such as pull-ups, effects like high impedance

What's next?

More on data-flow analyses

References

- [1] Peano, Giuseppe (1889).Arithmetices principia, nova methodo exposita[The principles of arithmetic, presented by a new method], pp. 83–97
- [2] Peter Marwedel (2018), Embedded System Design: Embedded Systems, Foundations of Cyber-Physical Systems, and the Internet of Things, Springer 2018, ISBN 9783319560458

