B NTNU | sioncindrecnoivay

Compiler Construction

Lecture 9: Practical parsing issues and yacc intro
2020-02-04
Michael Engel

Overview

* Practical parsing issues
« Error recovery
* Unary operators
* Handling context-sensitive ambiguity
« Left versus right recursion

* A quick yacc intro
« Syntax of yacc grammar descriptions
* yacc-lex interaction
 Example

N ian Universi
@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc

| Syntax

Error recovery | analysis

« Syntax errors are common in program development
 Our previous parsers have stopped parsing at the first error
* Is this what a programmer would want? [2]
* Prefer to find as many syntax errors as possible in each compilation

« A mechanism for error recovery helps the parser to move on to a
state where it can continue parsing when it encounters an error

 Select one or more words that the parser can use to synchronize
the input with its internal state

* When the parser encounters an error, it discards input symbols
until it finds a synchronizing word and then resets its internal state
to one consistent with the synchronizing word

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 3

“ Syntax

Error recovery | analysis

« Consider a language using semicolons as statement separators

* The semicolon can be used as synchronizing element: when an error
occurs, the parser calls the scanner repeatedly until it finds a semicolon

foo = func)42 ;

return foo ;

» Here, a recursive-descent parser can simply discard words until it finds
a semicolon and return (fake) success [1]

* This resynchronization is more complex in an LR(1) parser:
* it discards input until it finds a semicolon...
« scans back down the stack to find state with valid Goto[s, Stmt] entry
« the first such state on represents the statement that contains the error
» discards entries on the stack above that state, pushes the state
Goto[s, Stmt] onto the stack and resumes normal parsing

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 4

| Syntax

Unary operators | analysis

* Classic expression grammar includes binary operators only
» Algebraic notation includes unary operators
* e.g., unary minus and absolute value
» Other unary operators:
 autoincrement (i++)
« autodecrement (i--)
 address-of (&)
 dereference (*)
* boolean complement (!)
« typecasts ((int)x)
« Adding these to the expression grammar requires some care

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 5

‘5 Syntax
analysis

Unary operators

Example: expression grammar with an absolute value operator | |x

Start

Start — Expr !
Expr — Expr + Term Expr

| Expr - Term / l \

| Term Expr "-" Teirm
Term — Term x Value Telrm Value

| Term + Value y !

| Value A/\/alue\A Facfor
V l _’ I [1] F t
alue ||" Factor (] Fgetor <num,3>

| Factor y
Factor— "(" Expr ")" <name, x>

| num

Parse tree for || x - 3
| name

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 6

Science and Technology

Unary operators

Example: absolute value operator | |x

« Absolute value should have higher precedence
than either x or +

However, it needs lower precedence than Factor

* this enforces evaluation of parenthetic expressions
before application of | |

The example grammar is still LR(1)
* but it does not allow to write || || x

Writing this doesn’t make much sense
* but it’'s a legal mathematical operation, so why not?
« This would work: || (|| x)

Problem for other operators like (dereferencing) *

* **p is a common operation in C

Start

v

Expr
Expr "=" Term
oo
Term atue
v v
Valye Factor
uII.. Factor <npum. 3>
<name, X>
Start — Expr
Expr — Expr + Term
| Expr - Term
| Term
Term — Term x Value
| Term + Value
| Value
Value — "||" Factor
| Factor
Factor— "(" Expr ")"
| num
| name

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 7

Unary operators

Problem for other operators like *
* **p is a common operation in C

e Solution:

» add a dereference production for Value
as well: Value — "*" Value

* The resulting grammar is still LR(1)

» even if we replace the "x" operator
in Term — Term x Value with "*",

overloading the operator "*" in the
way that C does

* The same approach works for unary minus

Start
Expr

Term

Value

— - 1

Factor—

Expr

Expr + Term
Expr - Term
Term

Term "*" Value
Term = Value
Value

"*" Value
"||" Factor
Factor

“(" Expr)"
num

name

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 8

Handling context-sensitive ambiguity |/

analysis

 Using one word to represent two different meanings can create a
syntactic ambiguity

« Common in early programming languages (FORTRAN, PL/I, Ada)

« Parentheses used to enclose both the subscript expressions of an
array reference and the argument list of a subroutine or function

* For the input fee(i, j), the compiler cannot tell if fee is a two-
dimensional array or a procedure that must be invoked

» Differentiating between these two cases requires knowledge of
fee’s declared type

* This information is not syntactically obvious
* The scanner would classify fee as a name in either case

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 9

| Syntax
analysis

Handling context-sensitive ambiguity

* We can add productions that derive both subscript expressions and
argument lists from Factor

« Handling this in a classical Factor— FunctionReference
expression grammar might ArrayReference
look like this: “(" Expr ")"
num
* Since the last two productions name
have identical right-hand sides, FunctionReference
this grammar is ambiguous, which — name "(" Arglist ")"
creates a reduce-reduce conflict iArrayReference
in an LR(1) table builder — name " (" Arglist ")"

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 10

Science and Technology

| Syntax
analysis

Handling context-sensitive ambiguity

Our grammar results in an LR(1) reduce-reduce conflict
* Resolving this ambiguity requires extra-syntactic knowledge

* "Is name a function or an array?"

* In a recursive-descent parser, the Factor— FunctionReference
compiler writer can combine the ArrayReference
code for FunctionReference and “(" Expr ")"
ArrayReference num
» add the extra code required to name

check the name’s declared type FunctionReference

* In a table-driven parser built with a — name “(" Arglist ")"
parser generator, the solution must | 4;rgyreference
work within the framework provided — name " (" Arglist ")"
by the tools

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 11

Science and Technology

Handling context-sensitive ambiguity |/

analysis

Factor— FunctionOrArrayReference

Two different approaches to solve this: | (" Expr ")"

* Rewrite grammar to combine function I :::e

invocation and array reference into a FunctionOrArrayReference
single production — name "(" Arglist ")"

* issue is deferred until a later step in translation
* there, it can be resolved with information from the declarations
» Scanner can classify identifiers based on their declared types
* requires handshaking between scanner and parser
« works as long as the language has a define-before-use rule
* Rewritten in this way, the grammar is unambiguous

* Since the scanner returns a distinct {50 e ronce
syntactic category in each case, the — function_name "(" ArglList ")"

parser can distinguish the two cases i FunctionOrArrayReference
— array_name "(" Arglist ")"

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 12

“ Syntax

Left versus right recursion | analysis

« Top-down parsers need right-recursive grammars
« Bottom-up parsers can accommodate either left or right recursion

» Compiler writers must choose between left and right recursion in
writing the grammar for a bottom-up parser — how?

Stack depth criterion
« Left recursion can lead to smaller stack depths
» Accordingly, lower memory use, less recursions

[ist — L[ist elt [ist — elt List
| elt | elt
Left recursive grammar Right recursive grammar

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 13

Left versus right recursion: stack depth | =yitax

analysis

* The left-recursive grammar shifts eltl onto
its stack and immediately reduces itto List elts

)) elt
* Next, it shifts elt2 onto the stack and reduces - !
. . 3
itto List and so on...
o . . elt; elty
* [t proceeds until it has shifted each of the five
elt’s onto the stack and reduced them to [ist
 Thus, the stack reaches List ‘l’ Li“ elt
. . elt
« a maximum depth of two i?si .
1S e
. and an average depth of 22 = |2 List elts elts
_6 3 List elt3 elt4 elth
* The stack depth of a left-recursive List elt2 elt3 elth elt5
grammar depends on the grammar, List eltl elt2 elt3 elt4 elths
not the input stream Left recursion

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 14

Left versus right recursion: stack depth | =yitax

analysis

* The right-recursive grammar first shifts all

five elt’s onto its stack elt)

* Next, it reduces elt5to List using rule two Y
and the remaining elt’s using rule one elts

» Thus, its maxium stack depth will be 5 ity eltq
and the average will be = =3

. _ List — elt List
* Its maximum stack depth is bounded | elt

only by the length of the list e

» With thousands of elements in a list, this ~ jeltl List

can become problematic eltbeltzfist
eltl elt2 elt3 List

eltl elt2 elt3 elt4 List
eltl elt2 elt3 elth4 elth List

Right recursion

© NTNU | ?gg;“feg':;‘dUT”;gﬁ;%fggj Compiler Construction 09: Practical parsing, yacc 15

Left versus right recursion: associativity | syntax

analysis

* Left recursion naturally produces left associativity, and right
recursion naturally produces right associativity

* |In some cases, the order of evaluation makes a difference

« Consider the string x1 + x2 + x3 + x4 + x5
* the left-recursive grammar implies a left- to-right evaluation order
* the right-recursive grammar implies a right- to-left evaluation order

« With some number systems, such as floating-point arithmetic, these
two evaluation orders can produce different results [1]

Expr — Expr + Operand Expr — Operand + Expr
| Expr - Operand | Operand - Expr
| Operand | Operand

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 16

"5 Syntax
analysis

The problem with floating point

* Consider the expression x1 + x2 + x3 with
x1=1.0, x2=1.0el10, x3=-1.0el0

* the left-recursive grammar implies a left-to-right evaluation order:
(x1 + x2) + x3
= (1.0 tmi;oelo) + (-1.0e10) = (1.0e10) + (-1.0e10) = 0.0

This addition is problematic since
1.0 <<< 1.0e10 (LSBs get shifted out)

* the right-recursive grammar implies a right-to-left evaluation order:
x1 + (x2 + x3)
1.0 + (1.0e10 + (-1.0el10)) = 1.0 + 0.0 = 1.0

» Obviously, these results should not differ. More details can be found in [3]

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 17

A parser with yacc: scannher <declarations>

, .<translation rules>
* We've seen lex scanners already — each m
token is assigned a number 5<functions> 5
(starting at O if nothing is specified): g 5
éi{_“_“_________“_“f e 1
:#include <stdio.h>4*wwﬂ - -
-enum { IF, THEN, ENDIF, INT, END };
%}
%%
- I\n\t\v o nothing, this is whitespace
INe\t\WN] { /*D hi his is whi */ }
if { return IF; }
- then { return THEN; } on—— -
: : . n the declarations section you can
: endif { return ENDIF; } include C code between %{ and }%.
: end { return END; } We used enums instead of #defines
- [0-9]+ { return INT; } to automatically enumerate token
- %% numbers — yacc will do this
: for us automaticall

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 18

Code supplied for lex <declarations>

%%

_ _ ‘<translation rules>
« We needed a main function that repeatedly :qq

calls the generated scanner function yylex(): :<functions>

<previous declarations> In a yacc/lex parser and scanner, examplel.l

%% yacc calls yylex()

: . . automatically for each token
-<previous regexps and actions> "

- %%

-int main (void) {

int token = 0;

while (token != END) {
token = yylex(); “®

switch (token) {
case IF: printf ("Found if\n"); break;
case THEN: printf ("Found then\n"); break;
case ENDIF: printf ("Found endif\n"); break; g
case INT: printf ("Found integer %s\n", yytext); break;
case END: printf ("Hanging up... bye\n"); break;

N U
© NTINU | Sopwegan T”;Zﬁfjgg"; Compiler Construction 09: Practical parsing, yacc 19

yacc Is quite similar

« Description files also have three parts
(definitions, rules and auxiliary C
functions) separated by "%%":

:/* definitions */
%%

:/* rules */

%%

:/* auxiliary routines */

:<definitions>

%%
:<rules>
- %%

‘<auxiliary routines>

examplel.y

© NTNU | SNc?gﬁergfﬁdUT”;ZﬁLﬂ%gO; Compiler Construction 09: Practical parsing, yacc 20

yacc definitions <definitions>

%%
.. : -<rules>
« Contain information about the tokens o9
used in the syntax definition ‘<auxiliary routines>
e e cally §
. %otoken NUMBER va;‘;‘;”i;na&ken IDs, examplel.y
:%token ID n override these :

: but you ca
%token WORD 47114

:%start nonterminal \ e
o Il yacc whic
%{ You can te ybol i< the start

. S m
nontermmal y ¢ the first)

T ‘

: symbol (defau

%}

: . de C ’
 *k Like in lex, you can ‘“c'“rs)
/% rules */ ' code (headers, global vars,..

: c or.{ and %} here

99 between %{ a

:/* auxiliary routines */

Normesian Universicy of _ , . .
@ NTINU | S Tecimoioss Compiler Construction 09: Practical parsing, yacc 21

yacc Yu Ies <definitions>

%%

* This defines the grammar in a BNF-like é;;ﬂw

notations and related C actions ‘<auxiliary routines>

examplel.y

:/* rules */ _
. The grammar definition 1S
milar to our notation and

:/* here comes your grammar */ &S

:/* auxiliary routines */
-int main(.) ({
/* the main function is not automatically generated */

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 22

yacc-lex interaction

« yacc parsers assume the existence of function yylex() that
implements the scanner (lex generated or handwritten)

« Scanner yylex() return value indicates the type of token found
» Other values passed in variables yytext and yylval

 yacc determines integer representations (IDs) for tokens
« Communicated to scanner in file y.tab.h

yyparse () function
parser.y —» y.tab.c \ source

Use "yacc -d" 10 ta
generate Y- tab.h § by

-_’ parser.exe
scanner.l % lex. yyc / output
yylex() function

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 23

yacc example: parser

A yacc parser to convert binary numbers

to decimal

LA

Grammar, will !oe
implemented in

sunction yyparse()

'bindec.y

:%{

- #define YYDEBUG 1
:#include <stdio.h>
:#include <stdlib.h>

Evoid yyerror (char *s);

-int yylex(void);
‘extern char *yytext;??num yytokentype

§<definitions>

%%

.<rules>

%%

‘<auxiliary routines>

{ printf("\n%d", S$S); }
{ $6=51*2+%2;]

: { $$=51; }

'B : ZERO { $5=51; }

© | ONE { $5=51; }

- %ot

N ;L
‘L:LB
. | B

. ‘void yyerror(char *s)

i

printf(\n%s: %s\n", s, yytext);

: . IFRO = 258, @ :

%} . ONE =259 i}

? 1 5

:%token ZERO ONE ¥ . y.tab..h int main()

. %hstart N 1 e ;{

' (— y-tab.h) | while(yyparse()) ; o el

@ NTNU

Norwegian University of
Science and Technology

Compiler Construction 09: Practical parsing, yacc

yacc example: scanner <definitions>

The lex scanner for our parser

vy
:<rules>
%o

Lo bindec.1

‘<auxiliary routines>

#include <stdio.h>

i i : . i ut
#%nclude fstdllb.tp Additional mform_auonwa;o &
#1:(:1LId? ty ’ tib) 2 W‘ parsed token inyy

: extern int yylval; _

%} : -

: tion

L 99, Scanner deslcnp ’

h 4 implemented In yylex()

:0 { yylval=0; return ZERO; }

1 { yylval=1; return ONE;gf Token IDs ZERO/ONE “eturned to yyparsel)
. R o

IUES

:\n return O;

i lval
Numeric value for token passed in Yy

. return yytext[0];

- Yoo

‘int yywrap() 5
{ :

. return 1;
1

@ NTNU | sanetandrecnoiogy Compiler

yylex()
S
‘—
4—
Token,
yylval, yytext
yyparse()
Construction 09: Practical parsing, yacc 25

Input file

yyparse() and yylex()

 yyparse() called once (or repeatedly until EOF) from main (user-supplied)
* It repeatedly calls yylex() until done

« On syntax error, calls yyerror() (user-supplied)

« Returns O if all input was processed

* Returns 1 if aborting due to syntax error

 yylex() called automatically (repeatedly) from yyparse()
« Every time a new token is required by the parser
* Its return value is the recognized token

* Defined in y.tab.h, generated from %token declarations by yacc
(option -d)
» Token encoding: EOF = 0, character literals get their ASCII value, other
tokens are assigned numbers > 127

« Additional information passed back in variables yylval and yytext

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 26

yacc grammar actions

Like in lex, actions can be specified as C code after each production
» They are executed after the production RHS has been derived

« Special identifiers $$, $1, $2... refer
to items on the parser's stack

symbol on t O and
.. ! bols like ZER

Tole Forc’;ilrémirt\as‘tzy\g‘s for the value of
yylval returned by the scanner
‘N : L I printf("\n%d", $S); } i mmm

L : LB {$$=51%2+52; } 1 B) it 3 B

. | B { 65=61; } S VAN VU N AN

:B : ZERO { $$=51; } L - LB $65=61*%24+52- 5
] ONE { $$=51; } f __________________ { _______________________________ ’_ }

§ - * yacc generates this

%% . jue returned line of C code:
e 58 s the T UEEAOR | o

© NTNU | Qggwgegf,?dﬂ“;zﬁfgﬁgg Compiler Construction 09: Practical parsing, yacc 27

What’s next? | Syntax

analysis

« Data types
« Semantic analysis

References

[1] Spenke, M., Muhlenbein, H., Mevenkamp, M., Mattern, F., & Beilken, C. (1984).
A Language Independent Error Recovery Method for LL(1) Parsers.
Softw., Pract. Exper., 14, 1095-1107

[2] Brett A. Becker et al. 2019.

Compiler Error Messages Considered Unhelpful: The Landscape of Text-Based
Programming Error Message Research.

In Proceedings of the Working Group Reports on Innovation and Technology in Computer
Science Education (ITICSE-WGR '19). ACM, New York, NY, USA, 177-210.
DOI:https://doi.org/10.1145/3344429.3372508

[3] David Goldberg. 1991.
What every computer scientist should know about floating-point arithmetic.
ACM Comput. Surv. 23, 1 (March 1991), 5-48. DOI:https://doi.org/10.1145/103162.103163

@ NTNU | S oy Compiler Construction 09: Practical parsing, yacc 28

https://doi.org/10.1145/103162.103163

