# Norwegian University of Science and Technology

## **Compiler Construction**

Lecture 3: Scanner Generators
2020-01-14
Michael Engel

Includes material by Jan Christian Meyer

#### **Overview**

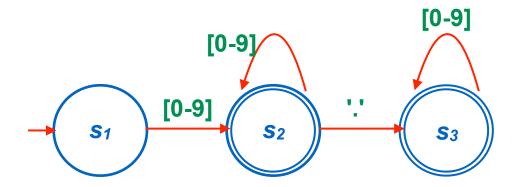
- DFAs and regular expressions
- Nondeterministic finite automata (NFA)
- From regular expressions to NFAs



### The DFA, again



This DFA from the previous week...



...was able to tell you whether a character sequence is a valid decimal number (integer + optional fractional part) or not

• Start with the initial state  $s_1$ , then follow the edges

#### More about lexemes

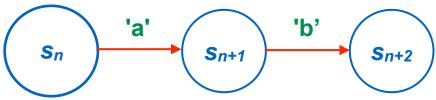


Common patterns in lexemes

- Sequences of specific parts
  - chains of states in the graph



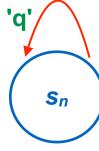
- Lexemes are units of lexical analysis, words
- Like dictionary entries



Sequence "ab"

#### Repetition

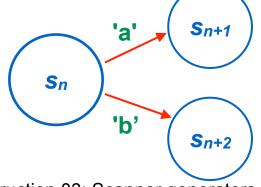
loops in the graph



Any number (>=0) of 'q's

#### Alternatives

different paths in the graph



Either 'a' or 'b'

#### **DFA formal notation**



Formal definition: DFA = 5-tuple (Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F)

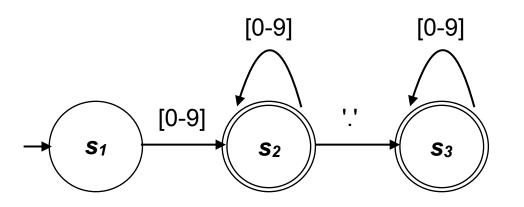
**Q** is a finite set called the **states**,

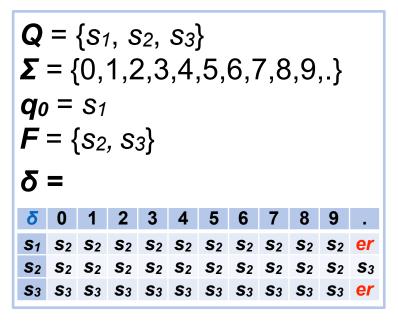
Σ is a finite set called the *alphabet*,

 $\delta$ :  $\mathbf{Q} \times \mathbf{\Sigma} \rightarrow \mathbf{Q}$  is the *transition function*,

 $q_0 \in \mathbf{Q}$  is the **start state**, and

 $F \subseteq Q$  is the set of accepting states





### **Alphabets in DFAs**

- Alphabet: finite set of symbols (characters)
  - {0,1} is the alphabet of binary strings
  - [A-Za-z0-9] is the alphabet of alphanumeric strings
- A language is a set of valid strings (sequences of symbols) over an alphabet
  - $L = \{000, 010, 100, 110\}$  is the language of "even, positive binary numbers less than 8"
- A finite automaton accepts a language
  - it decides whether or not a given strings belongs to the language described by it



## **Operations on languages**

- *Union* of languages:  $s \in L_1 \cup L_2$  if  $s \in L_1$  or  $s \in L_2$
- Concatenation: L<sub>1</sub>L<sub>2</sub> = { s<sub>1</sub>s<sub>2</sub> | s<sub>1</sub> ∈ L<sub>1</sub> and s<sub>2</sub> ∈ L<sub>2</sub>}
- Concatenation of a language with itself: "multiplication" (Cartesian product):

```
LLL = \{ s_1s_2s_3 \mid s_1 \in L \text{ and } s_2 \in L \text{ and } s_3 \in L \}
```

#### Closures

- $L^* = \bigcup_{i=0,1,2,...} L^i$ : "Kleene closure": **0** or more strings from L
- $L^+ = \bigcup_{i=1,2,...} L^i$ : "Positive closure": **1** or more strings from L



## Operations on languages: examples

- *Union* of languages:  $s \in L_1 \cup L_2$  if  $s \in L_1$  or  $s \in L_2$ 
  - $L_1 = \{000, 010, 100, 110\}, L_2 = \{001, 011, 101, 111\}$  $\Rightarrow L_1 \cup L_2 = \{000, 001, 010, 011, 100, 101, 110, 111\}$
- Concatenation:  $L_1L_2 = \{ s_1s_2 \mid s_1 \in L_1 \text{ and } s_2 \in L_2 \}$ 
  - $L_1 = \{\text{"ab"}, \text{"c"}\}, L_2 = \{\text{"x"}\}$  $\Rightarrow L_1L_2 = \{\text{"abx"}, \text{"cx"}\}$
- Concatenation of a language with itself: "multiplication" (Cartesian product):

```
LLL = \{ s_1s_2s_3 \mid s_1 \in L \text{ and } s_2 \in L \text{ and } s_3 \in L \}
```

```
{ "aaa", "aab", "aba", "abb", "baa", "bab", "bba", "bbb" }
```



## Operations on languages: examples

#### Closures

•  $L^* = \bigcup_{i=0,1,2,...} L^i$ : "Kleene closure": **0** or more strings from L

```
0 strings = empty word ε ("epsilon")
{"ab", "c"}* = { ε, "ab", "c", "abab", "abc", "cab", "cc", "ababab",
"ababc", "abcab", "abcc", "cabab", "cabc", "ccab", "ccc", ...}
```

•  $L^+ = \bigcup_{i=1,2,...} L^i$ : "Positive closure": 1 or more strings from L

```
{"a", "b", "c"}+ = { "a", "b", "c", "aa", "ab", "ac", "ba", "bb", "bc",
"ca", "cb", "cc", "aaa", "aab", ...}
```

•  $L^* = \{ \epsilon \} \cup L^+$ 



## Regular expressions ("regexp")

Given: *Empty string*  $\varepsilon$  (epsilon), Alphabet  $\Sigma$  (sigma)

#### Recursive definition of regular expressions:

#### <u>Basis</u>

- $\varepsilon$  is a regular expression,  $L(\varepsilon)$  is the language with only  $\varepsilon$  in it
- If a is in  $\Sigma$ , then a is also a regular expression, L(a) is the language with only a in it

#### **Induction**

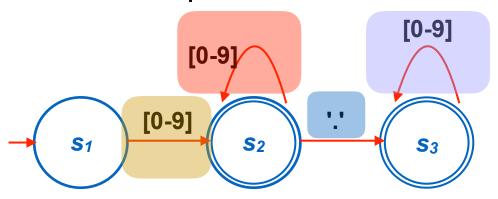
- If  $r_1$  and  $r_2$  are regexps  $\Rightarrow r_1 \mid r_2$  is regexp for  $L(r_1) \cup L(r_2)$  (selection)
- If  $r_1$  and  $r_2$  are regexps  $\Rightarrow r_1r_2$  is regexp for  $L(r_1)L(r_2)$  (concatenation)
- If r is a regular expression ⇒ r\* denotes L(r)\* (Kleene closure)
- (r) is a regular expression denoting L(r)
   (We can add parentheses to group parts of the regexp)



## DFAs and regular expressions



Again, the DFA which accepts decimal numbers:



This DFA corresponds to the following regular expression:

[0-9] [0-9]\* ( . [0-9]\* )? optional, since state 
$$s_2$$
 accepts

#### **Abbreviated notation** used for regexps:

- any character  $\in \Sigma$
- [abc] either 'a' or 'b' or 'c'
- [a-d] characters from 'a' to 'd' inclusive
- ? either zero or one repetition

## Three ways to describe a language

- Graphs
  - provide a quick overview of the structure
- Tables
  - help writing programs to implement the DFA
- Regular expressions
  - help generating accepting automata automatically

### Regular languages

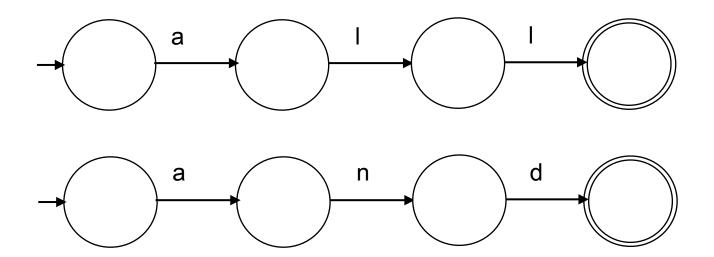
- All three representations are equivalent
  - We have not shown a formal way to transform one representations into the other and did not prove this
  - Maybe you can still see it?
- The family of languages that can be recognized by automata/regexps is called regular languages
- They are an important and powerful class of languages
  - However, they do not cover all use cases
  - e.g., recursion cannot be specified using regexps
  - more on this later...



### **Combining automata**

Wanted: language that includes the words {"all", "and"}

Simple DFAs to detect each of the words separately:

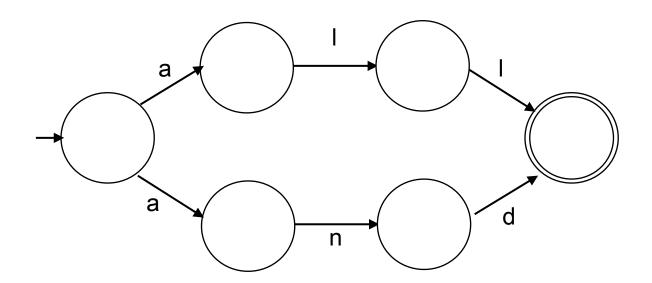


We omit the numbering of states if the specific number is not relevant for an example

## **Combining automata**

Wanted: language that includes the words {"all", "and"}

- Can we build an automaton to detect both words?
  - How about combining both DFAs?
  - Simply join the starting and accepting states of both:

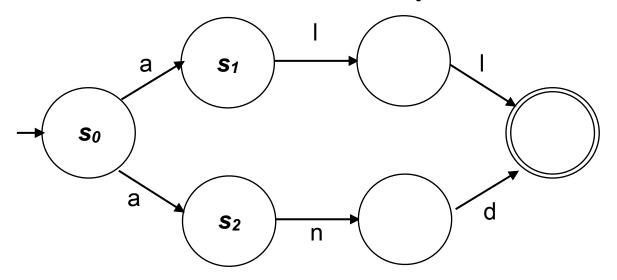




### Now we have a (small) problem

"Walking" the DFA does not work any more

- Starting at s₀ and reading 'a', the next state can be s₁ or s₂
- If we read an 'a', chose s₁ and then read an 'n' ⇒ wrong path
- We would need to go to states s<sub>1</sub> and s<sub>2</sub> at the same time
  - Otherwise, we would need some way to backtrack to s<sub>0</sub>

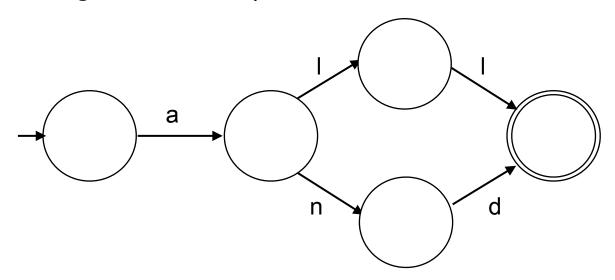




#### An obvious solution

Combine states states s<sub>1</sub> and s<sub>2</sub>

- ⇒ postpone the decision which path to choose
- Walking the DFA works again!
- Need to determine which parts both words have in common (can that be generalized?)



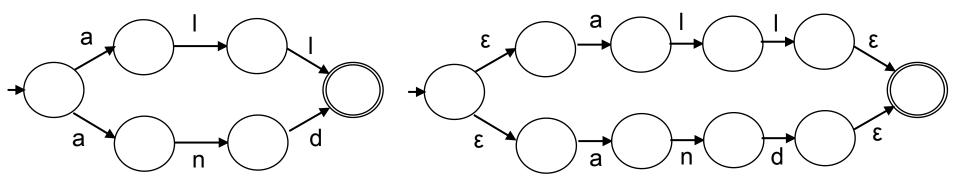


#### Non-Deterministic Finite Automata

#### Idea:

admit multiple transitions from one state on the same character

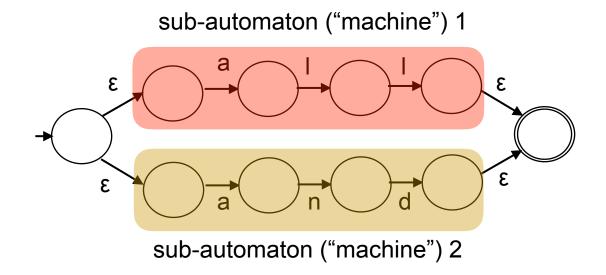
- Alternative: allow transitions on the empty input ε (i.e., without reading a character)
- Both notations are equivalent:



### NFAs and regular expressions

NFAs can easily be constructed from regular expressions

- For our example, the regexp would be: { all | and }
   (equivalent deterministic variant: a{II | nd})
- The two sub-automata can easily be identified in the graph:





## Constructing a scanner

What are the parts of a regexp again?

1. a (single) character: stands for itself (or  $\varepsilon$  – that's not shown)

2. concatenation: R<sub>1</sub>R<sub>2</sub>

3. selection:  $R_1 \mid R_2$ 

4. grouping:  $(R_1)$ 

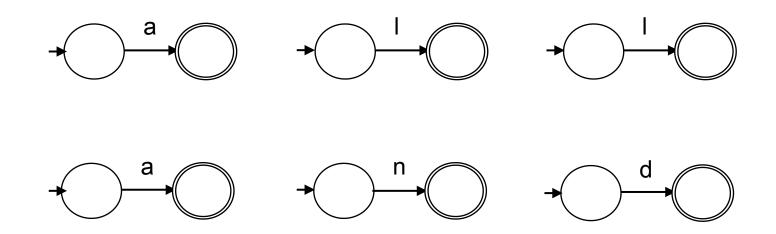
5. Kleene closure:  $R_1^*$ 

- We can construct an NFA for each of these
   ...as long as R₁ and R₂ are regexps (⇒ recursive definition)
  - Note: each DFA is also an NFA (with zero ε-transitions)
  - Formal: the set of DFAs is a subset of the set of NFAs

### Constructing a scanner: characters

Single characters (and epsilons) in a regexp become transitions between two states in an NFA

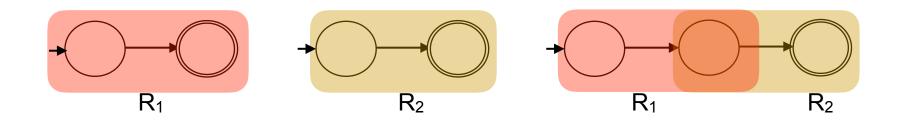
For our example { all | and }, the transitions are thus:



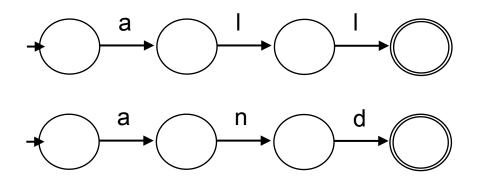
Now we can combine these simple regexps...

### Constructing a scanner: concatenation

Where R<sub>1</sub>R<sub>2</sub> are concatenated, join the accepting state of R<sub>1</sub> with the start state of R<sub>2</sub>

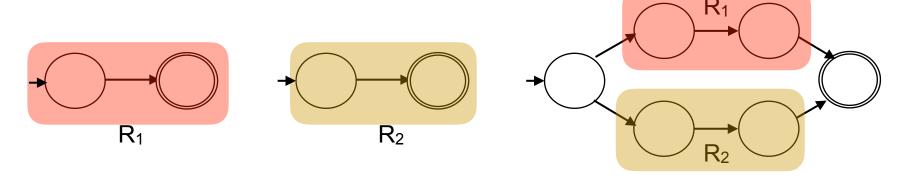


• In our example:

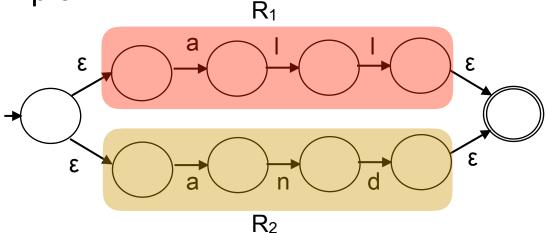


## Constructing a scanner: selection

Introduce new start and accept states, attach them using ε-transitions (so as not to change the language):



• In our example:



## Constructing a scanner: grouping

Parentheses just delimit which parts of an expression to treat as a (sub-)automaton

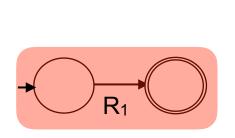
 they appear in the form of its structure, but not as nodes or edges

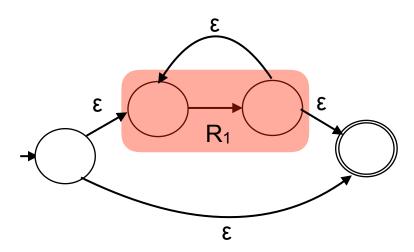
In our example, the automaton for (all | and ) is identical to the one for ((a)(l)(l) | (a)(n)(d))

#### Constructing a scanner: Kleene clos.

R<sub>1</sub>\* means zero or more concatenations of R<sub>1</sub>

- Introduce new start and accept states and add ε-transitions to
  - Accept a single walk through R<sub>1</sub>
  - Loop back to the start of R<sub>1</sub> to allow any number of repetitions
  - Bypass R<sub>1</sub> entirely (zero walkthroughs, i.e. R<sub>1</sub> does not occur)







#### What have we achieved so far?

- We have shown (by construction) that we can construct an NFA for <u>any</u> regular expression
  - independent of the contents of that expression
- This is called the McNaughton-Thompson-Yamada algorithm
   [1][2]
- But what about the positive closure, R<sub>1</sub>+?
  - It can be made from concatenation and Kleene closure, try it yourself
  - It's handy to have as notation, but not necessary to prove what we wanted here



#### Some wise words and references

Jamie> Some people, when confronted with a problem, think "I know, Jamie> I'll use regular expressions." Now they have two problems.

Jamie Zawinksi, early Netscape engineer in a 1997 Usenet article <a href="mailto:s350C496.370D7C45@netscape.com">33F0C496.370D7C45@netscape.com</a>>

[1] R. McNaughton, H. Yamada (Mar 1960):

"Regular Expressions and State Graphs for Automata".

IEEE Trans. on Electronic Computers. 9 (1): 39-47. doi:10.1109/TEC.1960.5221603

[2] Ken Thompson (Jun 1968):

"Programming Techniques: Regular expression search algorithm".

Communications of the ACM. 11 (6): 419–422. doi:10.1145/363347.363387

