B NTNU | sioncindrecnoivay

Compiler Construction

Lecture 2: Compiler Structure and Lexical Analysis
2020-01-10
Michael Engel

.0rg

Theoretical and practical exercises

TA: Lahiru Rasnayake

Six problem sets, one every two weeks
Theoretical questions on scanning, parsing, optimization...
Practical: build parts of your own small compiler (in C)

« Get your own software project running

Solutions need to be handed in on time

« Rather, an empty solution than a plagiarized one
Only the final two will be graded

« 20% of the final grade (80% exam)
More details next week

@ NTNU | S oy Compiler Construction 02: Compiler Structure, Scanning

2

Overview

Overview: definition and tasks of a compiler
Structure and stages of a typical compiler
Deterministic finite automata (DFA)

Lexical analysis (scanning)

N ian Universi ; i i i
@ NTNU | Sopvestan T“;gﬁf;t,gg; Compiler Construction 02: Compiler Structure, Scanning 3

Compilers are everywhere

* Original idea: enable programming of computers in higher-
level abstractions than machine language

— Zuse's Plankalkul (1940s), FORTAN, LISP, A0 (1950s)
- Today: Swift

— Many different source languages and target platforms @

‘g . Rub
. Additional uses of compilers: C# @

Java

— Static analysis and verification G+

— Hardware synthesis i)‘” $

— Source-to-source transformations "1 emscripten
— Just in time (JIT) compilation E*TEX

@ NTNU | S oy Compiler Construction 02: Compiler Structure, Scanning 4

What does a compiler do?

« Compiler:
“Tool that translates software written in one language into
another language”

« must understand both the form, or syntax, and content, or
meaning (semantics), of the input language

* and understand the rules that govern syntax and mean-
Ing in the output language

* needs a scheme for mapping content from the source
language to the target language

 Requirements:
* must preserve the meaning of the program being compiled
* must improve the input program in some discernible way

@ NTNU | S oy Compiler Construction 02: Compiler Structure, Scanning 5

The compilation process black box

int factorial (int n)
{
int fact = 1;
while (n--)
fact = fact * n;
return n;

@ NTNU | S oy Compiler Construction 02: Compiler Structure, Scanning

OxE59F1010
OxE59F0008
0xE0815000
OxE59F5008

6

Compilation process in detail

source code in machine (“object”)
high-level language (.c) g code (.0)
preprocessor linker —S
1 1 libraries
preprocessed code executable code
compiler loader

1 |

assembler code (.s)

debugger

A4

assembler

@ NTNU | S oy Compiler Construction 02: Compiler Structure, Scanning

7

Structure of a compiler (1)

compiler

Source code

oy vant

es:

Target program

“‘understand both the form, “‘understand the rules that

or syntax, and content, or govern syntax and mean-
meaning (semantics), of : ing in the output language”

the input language”

“scheme for mapping
content from the source
language to the target
language”

@ NTNU | S oy Compiler Construction 02: Compiler Structure, Scanning

Structure of a compiler (2)

Source code

es:

compiler

% | Optimizer

Target program

“understand both the form,
or syntax, and content, or :

TN “understand the rules that
govern syntax and mean-
meaning (semantics), of : : ing in the output language”
the input language” ¥
“scheme for mappihg’ “mt;st improve the input
content from the source program in some
language to the target discernible way”
language”
@ NTNU

Norwegian University of
Science and Technology

Compiler Construction 02: Compiler Structure, Scanning

9

Intermediate representation (IR)

Sparc Java \ / Sparc
ML

X N7 MIPS ; MIPS
)%/ Pascal >IR/

‘ C & . 4 \
"‘ Pentium P entium

Itanium

« Early compilers directly
generated machine code

 n source languages, m targets:

n x m compilers required!

* |dea: use a common description
format: “Intermediate Representation” (IR)

— Transform source to IR (front end) and IR to target code (back end):
only n + m compilers required now

« Additional advantages of using intermediate representations:

— Easy to change source or target language

— Easier optimizations: developed only for the intermediate
representation

— Intermediate representation can be directly interpreted

© N'TINU | Sonwegian University of Compiler Construction 02: Compiler Structure, Scanning 10

Science and Technology

Stages of a compiler (1)

Source code

* character stream
 Lexical | Syntax | Semantic | Code | Code
anaIyS|s analysisf " | analysis | optimization| " | generation

foken sequence

Lexical analysis (scanning):

— Split source code into lexical units

— Recognize tokens (using regular expressions/automata) machine-level program
— Token: character sequence relevant to source language grammar

gx—y+42 »- g‘ld(x) |op(=) ﬂ,ld(y) | op(+) gnumber(42)

character stream token sequence

@ NTNU | S oy Compiler Construction 02: Compiler Structure, Scanning 11

Stages of a compiler (2)

Source code

Lexical * Syntax e | Semantic | Code | Code
analysis | 9 |analysis | | analysis » Loptimization »” [generation

token sequence syntax tree

Syntax analysis (parsing)
— Uses grammar of the source language

— Decides if input token sequence can be
derived from the grammar

expression — term { (+|-) term }

%\
| term — factor { (*|/) factor }
factor — "(' expression ')'
| id | number

© NTNU | ?gg;“fegf;‘dUT”;zﬁ;ﬂfggj Compiler Construction 02: Compiler Structure, Scanning 12

Stages of a compiler ()

Source code

<avey wiang s
P Sockey ant "Mefiier)
Pring o (e

| Lexical Syntax * Semantic *" Code | Code
analysisf © {analysisf # [analysis ¥ | optimizationf [generation
7 syntax tree IR

Semantic analysis

— Name analysis (check def. & scope of symbols) machi-l eve program

— Type analysis (check correct type of expressions)

— Creation of symbol tables (map identifiers to their types and positions in the
source code)

© N'TINU | Sonwegian University of Compiler Construction 02: Compiler Structure, Scanning 13

Science and Technology

Stages of a compiler ()

Source code

<avey wiang o
P Sockey ant “Mefifer
Pring wo o (e

i

*‘“""_“7] . o
Lexical Syntax | Semantic * Code
analysis{ © tanalysis} E analysis 4 kptimization
IR |

Code

| generation

IR

Code optimization

— Analyzes & applies patterns of redundancy machi-/eve program

— e.g., store of a variable followed by a load of it

— Often, different stages/levels of optimization with different intermediate
representations are applied

© N'TINU | Sonwegian University of Compiler Construction 02: Compiler Structure, Scanning 14

Science and Technology

Stages of a compiler (4)

Source code

~auey wiang s
P Sockey ant "efiier
Pring o (e

| | [) % ' ; ‘
| Lexical Syntax | Semantic i\ Code . | Code
i analysis{ © janalysisj = E analysis optimization | =9 Lgeneration
IR B machine

code

Code generation

— Determines and outputs equivalent machine instructions i ‘
for components of the IR (instruction selection) machine-level program

— Determines correct instruction order with respect to pipeline constraints,
exploitation of instruction-level parallelism (instruction scheduling)

— Assigns variables to registers (register allocation) and memory locations

© N'TINU | Sonwegian University of Compiler Construction 02: Compiler Structure, Scanning 15

Science and Technology

| Lexical
analysis

Lexical analysis (scanning)

* The compiler input is simply a stream (sequence) of bytes:

72,101, 108, 108, 111, 32, 119, 111, 114, 108, 100, ...

* By convention, these are mapped to letters, digits, etc.:

» Other mappings (encodings) exist
*e.g. Unicode UTF-8, EBCDIC

* On this level, the input program is just a lot of bytes without
any structure

© N'TINU | Sonwegian University of Compiler Construction 02: Compiler Structure, Scanning 16

nce and Technology

Lexical analysis (scanning) analyais

* Naive approach to scanning:
Read letters one by one, e.g., for a key word “while”:

w (119), h (104), i (105), I (108), e (10)

* Writing a compiler that has to detect this pattern every time
the programmer wants to start a loop is inconvenient:

* A programmer might choose to call a variable 'whilf":

w (119), h (104), i (105), 1 (108), (looking good so far...)
f(10) (oh no, start from scratch, that’s not a loop)

@ NTNU | S oy Compiler Construction 02: Compiler Structure, Scanning 17

Identifying syntactical units |anatyars

 Better approach:
Group letters into meaningful units and operate on those:

‘i!, Ef!, 1 I, ‘W!,,h!, ‘i,, ‘I!, ‘f!, ‘=!, ‘=!, 52!, E)!, 1 I, ‘x!, ‘=!, ‘5!, ‘;,, ‘},

if (whilf){x=5;}

* Here, we use color coding to identify the various units:

keywords and punctuation
delimiters of groups
variables

@ NTNU | S oy Compiler Construction 02: Compiler Structure, Scanning 18

Deriving code structure o

« What use is the coloring of our units?

We've already seen this one: keywords and punctuatlon |
if (whilf){x=5;} | delimiters of groups
variables

How would we color that line?
while (a<42){a+=2;}

Using the same coloring roles, we get:
while (a){a ; }

* These two statements have completely different meanings but share the
same (syntactic) structure (here: sequence of colors)

« We'll talk about structure later
» Today, we will look at lexical analysis

@ NTNU | S oy Compiler Construction 02: Compiler Structure, Scanning 19

| Lexical

Useful definitions analysis

* Lexeme
* Lexemes are units of lexical analysis, words

Hh 1] 7 11

* They're like entries in the dictionary, “house”, “walk”, “smooth”

 Token
« Tokens are units of syntactic analysis
* They are like units of a sentence, “noun”,“verb”,“adjective”

« Semantic
* The meaning of something (there is no sensible unit)
 Similar to explanations in the dictionary:
* house: “a building which someone inhabits”
« walk: “the act of putting one foot in front of the other”
« smooth: “the property of a surface which offers little resistance

© N'TINU | Sonwegian University of Compiler Construction 02: Compiler Structure, Scanning 20

Science and Technology

Classes of lexemes aralyais

* Lexemes with a fixed meaning
» keywords or reserved words
« “if", “while”, “for”, “==", ...
* Most languages forbid the use of these as identifiers (variable/
function/... names)

« Source is easier to parse, less ambiguous code
« Classes with countably infinite instances

eg.1,2,3,...65535, ...
* All of these are specific cases of the class “integer number”

@ NTNU | S oy Compiler Construction 02: Compiler Structure, Scanning 21

Finite automata [analyais

» Required:
Mechanism to identify classes of words (not just single words)
« Example: mechanism to recognize real numbers

* Informal description:
“A real number starts with one or more digits optionally followed by a
decimal point followed by zero or more digits”

* Formal approach: Deterministic Finite Automaton (DFA)
« example given as a directed graph here (easy to follow)

[0-9] [0-9]

@ NTNU | S oy Compiler Construction 02: Compiler Structure, Scanning 22

DFA structure | Lexical

DFAs are often represented as directed graph G = (V, E)

Edges E = Transitions
(annotated with conditions)

[0-9]

PARTIA

()

Nodes (vertices V) = States States sz, s;are
(here: sy, S2, S3) accepting states
(double outline)

Automaton
starts here

@ NTNU | S oy Compiler Construction 02: Compiler Structure, Scanning 23

DFA formal definition |analyais

Formal definition: DFA = 5-tuple (Q, 2, 0, qo, F)
Q is a finite set called the states,

2 is a finite set called the alphabet,

0: Qx2 — Q is the transition function,

qo € Q is the start state, and

F C Q is the set of accepting states

[0-9] [0-9] Q = {s1, S2, S3}

/\ 5=1{0,1,2,3,4,5,6,7,8,9,}

/\ ” Qo = S1
[0-9] : F = {s, 53}
5=727??

@ NTNU | S oy Compiler Construction 02: Compiler Structure, Scanning 24

Transition function of a DFA aralyais

Give the subsequent state for each state and each possible
Input, commonly as a table:

input character
o) 0 1 2 3 4 5 6 7 8 9

S1 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2
S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S3

current
state

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

[0-9] [0-9] Q = {s1, S2, S3}
/\ /\ 2={0,1,2,3,4,5,6,7,8,9,.}
qo = St
' F = {s2, s3}
O=77?7?

@ NTNU | S oy Compiler Construction 02: Compiler Structure, Scanning 25

Example DFA transition | oea)

5 0 1 2 3 4 5 6 7 8 9
S1 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2
S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S3
S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3

Input character sequence:

42.23

Start: in state s
Read 1st char: '4' = change to s:

[0-9] [0-9]

Read 2nd char: '2' = stay in s2

Read 3rd char: "." = change to s3
Read 4th char: '2' = stay in s3
Read 5th char: '3' = stay in s3
End of sequence in accepting state v

@ NTNU | S oy Compiler Construction 02: Compiler Structure, Scanning 26

Error handling analyets

« What happens when a character '.' is read in state s7or s37

5 0 1 2 3 4 5 6 7 8 9
S1 S2 S2 S2 S2 S2 S2 S2 S2 S2 s2 ?22?7?
S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S2 S3

S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 S3 ?77?

[0-9] [0-9]

The error state is
often omitted in DFA
descriptions.

Implied: all non indicated
characters = error

@ NTNU | S oy Compiler Construction 02: Compiler Structure, Scanning 27

Implementing a DFA in C the hard way

‘enum {error = 0, success};

-int scan_real number(void) {
- char c;
enum states = {sl, s2, s3};
enum states cur = sl;
while (1) {
c = getchar(); // get next char
if (c==EOF) break; // end?
switch(cur) {

case sl:
if (c>='0"' §6 c<='9")
CUr = s2;
else return error;
break;
case s2:
if (c>='0"' §6 c<='9")
CUr = s2;
else if (c=='.")
CUr = s3;
else return error;
break;

@ NTNU | sanetandrecnoiogy

if (c>='0"' &6 c<='9")
cur = s3;
else return error;
break;
} // switch
} // while
// check for accepting state

else return success;

Compiler Construction 02: Compiler Structure, Scanning

if (cur != s2 &§ cur != s3) return error;é

28

Implementing a table-driven DFAIn C

enum {error = 0, success};

‘enum states {sl, s2, s3, er};

‘enum states cur = s1;

:char alphabet[] = { '0', '1', '2', '3', '4',

: '5', e, 7, '8, 9, ot

:// next state for each char in alphabet (columns)
:struct scanner {
© enum states next[sizeof(alphabet)];

é};

:// rows of the transition table
‘struct scanner delta[sizeof(enum states)] = {

// 0 1 2 3 4 5 6 7 8 9 . |
: {s2, s2, s2, s2, s2, s2, s2, s2, s2, s2, er}, // sl %
. {s2, s2, s2, s2, s2, s2, s2, s2, s2, s2, s3}, // s2 i §
: {s3, s3, s3, s3, s3, s3, s3, s3, s3, s3, er}, // s3 -
. {er, er, er, er, er, er, er, er, er, er, er}, // er §
oF 5 0 1 2
... s; — T

S2 S2 S2 S2

S3 S3 S3 S3

@ NTNU

Norwegian University of
Science and Technology

Compiler Construction 02: Compiler Structure, Scanning

ééint scan_real number(void) {
. char c;
while (1) {
c = getchar(); // get next char
if (c==EOF) break; // end?
cur = delta[cur].next[lookup(c)];
} // while
// check for accepting state
if (cur!=s2 && cur!=s3)
return error,
else return SUCCESS; _ o™

S2 S2 S2 S2 S2 S2 S2 er

S2 S2 S2 S2 S2 S2 S2 S3

S3 S3 S3 S3 S3 S3 S3 er
29

Scanner generators

* Programming a word-class recognizer (lexical analyzer, or
scanner) with ad-hoc logic is complicated and error-prone

 Writing one using tables is a bit easier, but it requires
punching in a bunch of boring table entries to represent
specific DFAs

« Can we generate code for a scanner automatically from a
simple description?
« Specify word classes as regular expressions

* Let a program write a large table of states that includes all

of the expressions
* More on this next week!

© NTNU | Qggﬁfgg‘ﬂ‘:dUT”;gﬁfg,ggj Compiler Construction 02: Compiler Structure, Scanning

30

