
Operating Systems
Lecture overview and Q&A Session 8 – 14.3.2022

Michael Engel

Operating Systems Q&A 9 2

Lectures 15 and 16
File systems
• File abstraction – everything is a file
• Unix file access API
• Virtual file systems and mounting
• Simple file storage: contiguous, FAT, indexed, trees
• Free space and directory management

Modern file systems
• Challenges: reliability and performance
• Unix buffer cache
• Logical volume management and RAID
• Journaled, log-structured, CoW file systems

Operating Systems Q&A 9 3

File abstraction – everything is a file
Files
• Direct block access to disks does not work as abstraction

• OS provides a logical view for applications
• Files abstract from storage location

• Metadata: owner, access permissions, dates etc.
• Enables network and virtual file systems

• Unix: "everything is a file"
• every resource in the system

can be accessed using a
name mapped into a directory
hierarchy

• This breaks down for network access
• see Plan 9, Inferno followup projects

u h
b l m o t

o

Logi
Dir

F

Physical storage

File system and
directory
hierarchy

Operating Systems Q&A 9 4

Unix file access API
• Files are identified by per process file descriptors in the OS

• positive integer number, can be reassigned
• The Unix file access API consists of four simple system calls:
• int open(const char *path, int oflag, ...);

• Attempts to open the file with the given path name and options
for accessing (read only, read/write etc.)

• Returns a file descriptor (fd) refering to the file on success
• ssize_t read(int fd, void *buf, size_t nbyte);
• ssize_t write(int fd, const void *buf, size_t nbyte);

• Read (write) nbyte bytes from (to) file fd into (from) the
memory starting at user space memory address buf

• int close(int fildes);

• Closes the file: flushes buffers and invalidates file descriptor
• …plus a large number of supporting functions (access, stat, …)

Operating Systems Q&A 9 5

Virtual file systems and mounting
System-wide name space for files
• One root of the file system
• Additional file systems are mounted

into the file system hierarchy
• Overlay an existing directory

• Enabled by the virtual file system
• All file systems (parts of the OS

kernel in a monolithic OS) have
to implement the same API

• Virtual file systems are not backed by storage
• e.g. /proc, /sys on Linux

mount("/dev/sda1","/srv","xfs"…)

Operating Systems Q&A 9 6

Simple file storage: contiguous, FAT

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

Contiguous storage: files allocate increasing block numbers

Block 3 Block 8 Block 1 Block 9

Linked lists: file data blocks contain pointer to following block

Block 3 Block 8 Block 1 Block 9

Blocks of the file: 3, 8, 1, 9

9 8 1 –
0 5 10

first file block

Linked lists example: MS-DOS FAT file system

Operating Systems Q&A 9 7

Simple file storage: indexed
Indexed storage: special disk block with numbers of data blocks of a file

Block 3 Block 8 Block 1 Block 9

Blocks of the file: 3, 8, 1, 9

83 91
0 5 10

first file block

inode

:

direct 0

direct 1

direct 9

single indirect

double indirect

triple indirect

file blocks

:

:
Example: classical Unix file system

Uses index nodes ("inodes")

Multiple levels of indirection to
enable efficient indexing of small
files while also providing for
potentially large files

Operating Systems Q&A 9 8

Simple file storage: trees
Tree-based storage: idea from databases to efficiently retrieve records
can also be used to find chunks of a file in a file system

Example: Apple HFS (available since 1986 for the "classic" MacOS)
is based on a B* tree

5–6

219

96 2017 2826

Bl. 5

Bl. 6

7–9

Bl. 7

Bl. 8

Bl. 9

– 15–17

Bl. 15

Bl. 16

Bl. 17

18–20

Bl. 18

Bl. 19

Bl. 20

21

Bl. 21

25–26

Bl. 25

Bl. 25

27–28

Bl. 27

Bl. 28

–

Operating Systems Q&A 9 9

Free space and directory management
Approaches for free space management
• bit maps, linked lists and trees of free blocks

Directory management
• lists: FAT, traditional Unix

• hash functions and lists with variable length (BSD FFS)

8 char. 3 ch.

name exten-
sion

attributes

FAT32:

creation date
last access

last change
first data block

length

Unix System V 3.2: 14 char.

inode number file name (14 char. max)

file name

directory entries

hash
function

index

inode number

offset to next valid entry

name length
name

…

Operating Systems Q&A 9 10

FS challenges: reliability and performance
Reliability
• Disks can degrade or fail, systems can crash
• Prevent data loss, ensure integrity
• Methods: backups, checksums,

repair tools

Performance
• Low read/write speeds and high

positioning latency in traditional hard disks
• Solutions: caches

Disk management
• Extend file systems beyond the size of a single disk

"bathtub curve"

Operating Systems Q&A 9 11

Unix buffer cache
Buffer for disk blocks in main memory
• Algorithms similar to page frame handling for virtual mem.
• Optimizations:

• Read ahead: for sequential reads initiated transfer of
subsequent data blocks before they are requested

• Lazy write: a block is not written to disk directly
• allows optimization of write accesses, does not block writer

• Write back from cache
• if no more free buffers are available
• periodically to minimize data loss in case of system crash
• manually using sync(2)
• option when opening files (O_SYNC)

Operating Systems Q&A 9 12

Logical volume management
Remove 1:1 relation between file system and disk
• File systems can span multiple disks

LVM

physical
volumes

ext4

volume
groups

logical
volumes

ext4 xfs

/dev/vg1/srv /dev/vg1/var /dev/vg2/home

vg1 vg2

/dev/hda2 /dev/sda1 /dev/sdc2

Operating Systems Q&A 9 13

RAID
Idea: save costs by creating large logical disks out of
inexpensive smaller disks
• Additional features:

• better utilization of the available data bandwidth by using
parallel transfers

• fault tolerance using redundancy

Variants
• Hardware RAID: disk controller with special management

software (+potentially cache)
• Software RAID: layer between disk driver and file system code
• Different RAID levels – differ in throughput and reliability

Operating Systems Q&A 9 14

RAID levels
RAID0: striping – increase bandwidth, but increase failure probability by xN

RAID1: mirroring – increased read bandwidth, somewhat lower write
bandwidth, higher reliability by having a copy of the data

RAID5+6: distributed parity – additional write overhead (most used RAID)

Operating Systems Q&A 9 15

Journaled & log-structured file systems
Journaled file systems
• write a protocol of the changes in addition to writing data

and metadata
• all changes (e.g., create, delete) are part of a transaction
• All changes are also stored in a protocol file (log file)

Log-structured file systems
• (Radical) approach: one log is sufficient for everything!
• Blocks are not overwritten, but only appended to the log
• Changes to metadata are also stored in the log only
• Write operations are collected in main memory and then

written to disk as a single large segment

Operating Systems Q&A 9 16

CoW file systems
• Many modern file systems (e.g. BTRFS) refrain from overwriting

• Idea from LFS, but more flexible when allocation free areas
• Example: manipulate file (B+ tree)… [2]

• Example: "copy" complete directory tree
Only when P or Q are
changed, a copy is
performed –
basis for the efficient
creation of snapshots

Operating Systems Q&A 9 17

Overview Theoretical Exercise 7
All about file systems…

Why?

• File systems are a central part of most server and desktop
operating systems
• Not necessarily in embedded systems
• Also – object stores (Smalltalk, Lisp)

• File systems are crucial for non-functional properties of an OS
• Performance (latencies, throughput)
• Reliability

