

Operating Systems

Lecture overview and Q&A Session 6 – 21.2.2022

Michael Engel

Lectures 9 and 10

Memory management

- Memory allocation policies, strategies and problem def.
- Static vs. dynamic memory allocation
- Placement strategies and fragmentation
- Segmentation vs. paging

Virtual memory

- Demand paging
- Replacement strategies
- Thrashing
- Working set model

Memory allocation policies, strategies and problem def.

- Policies
 - Placement: Which area of memory should be allocated?
 - Fetch: When should we swap in memory contents?
 - Replacement: Which memory should be swapped out?
- Memory allocation problem
 - Find allocation of memory to satisfy the requirements of
 - User processes: code, data, stack, heap
 - Operating system: code and data, process control blocks, data buffers for input/output, ...
- Memory allocation methods are necessary!

Static vs. dynamic memory allocation

- Static allocation
 - use fixed memory areas for OS and user processes
- Problems:
 - Limited degree of multiprogramming
 - Limitation of other resources (e.g. I/O bandwidth)
 - Unused OS memory cannot be used by applications
- Dynamic allocation
 - Free list management: bitmaps
 - Linked lists / linked lists in free memory
 - Releasing memory
 - Problem: merging adjacent free gaps

Placement strategies and fragmentation

- Different algorithms: first fit, next fit, best fit, worst fit
- Buddy method
 - split memory dynamically into areas of a size 2ⁿ
- Problem: External fragmentation
 - Allocations create memory fragments outside of the allocated memory areas which cannot be used
 - Problem with all list based strategies, e.g. first fit, best fit, ...
- Problem: Internal fragmentation
 - Unused memory inside of allocated memory areas
 - Problem e.g. with the buddy allocator
 - since request sizes are rounded up to the next power of 2

Request: 70
Request: 35
Request: 80
Release A
Request 60
Release B
Release D
Release C

Segmentation vs. paging

Virtual memory: demand paging

Reaction to a page fault page in requested memory page 0 0 Background storage Page frames in memory В load v from F 2 0: 3 3 4 4 4: 5 5 6 Virtual address space 6 8 0 16: 11 0 Trap! Page table 10 0 **Operating** 0 system search for the requested 4 memory page presence bit

Replacement strategies

- What if no free page frame available when a request comes in?
- Sequence of events:
 - page fault, page out a page frame, page in requested page
 - Repeat the memory access
- Problem:
 - Which page to choose to be paged out (the "victim")?
- Replacement strategies:
 - first in, first out: Replace the *oldest page*
 - optimal: Time until next access to the respective page
 - LRU: Time since last access to the page
 - Second chance: clock and reference bits

Thrashing

 A page that was paged out is accessed immediately after the page out happened

The process spends more time waiting to handle the page

faults than with its own execution

- Solution 1: swapping of processes
 - Inactive processes do not require page frames
 - Can be temporarily swapped out to disk
- Solution 2: working set model
 - 80/20 rule: 80% of code uses only 20% of memory pages
 - approximate set of pages really needed by a process (working set): WSclock algorithm

Overview Theoretical Exercise 4

Memory management and virtual memory

Why?

- Virtual memory is the basis of all modern computers
 - Flexibility and
 - Protection
- Different approaches and algorithms have significant impact on the performance
- Multi-level virtual memory schemes enable efficient virtualization as basis of Cloud computing

The forum, finally!

- Discourse server is running since last Tuesday
 - open source solution (<u>https://github.com/discourse/discourse</u>)
 - IDI has provided us with a VM (thanks!)
 - https://tdt4186.idi.ntnu.no
- You should have received an invitation email
 - If not let us know!
 - Currently "only" about 180 users registered
 - but ~420 on Blackboard

