B NTNU | sioncindrecnoivay

Operating Systems

ecture overview and Q&A Session 5 —14.2.2022

Michael Engel

Lectures 7 and 8

Concurrency: Deadlocks and Starvation

« Deadlock definition, necessary and additional conditions
* Resource allocation graphs

* Dining philosophers problem

* Preventing deadlocks, detection and resolution

From source code to process

« Compilation process

« ELF file format and contents

* Linking and symbols

 Introduction to virtual memory and process memory layout
* Fork and exec system calls in detail and program startup

@ NTNU | sanetandrecnoiogy Operating Systems Q&A 5

Deadlock definition

Traffic rule:
"Left yields to right"
No car is allowed to proceed

,[...] a situation in which two or more
processes are unable to proceed

because each is waiting for one of the
others to do something.”

[Stallings]

Deadlock: passive waiting, process state is BLOCKED

Livelock: Active waiting (busy waiting/“lazy” busy waiting)

« Arbitrary process state (including RUNNING), but none
of the involved processes is able to proceed

Deadlocks are the “lesser evil”

« This state is uniquely discoverable
— Basis to “resolve” deadlocks is available

Active waiting results in an extremely high system load

Norwegian University of .
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS Q&A S 3

Deadlocks: necessary and additional conditions

All of the following three conditions must be fulfilled for a deadlock to occur
("necessary conditions”):

1. Exclusive allocation of resources ("mutual exclusion”)

» Only one process may use a resource at a time. No process may access a
resource unit that has been allocated to another process

2. Allocation of additional resources ("hold and wait")

» A process may hold allocated resources while awaiting assignment of
other resources

3. No removing of resources (“no preemption”)

 The OS is unable to forcibly remove a resource from a process once it is
allocated

4. Only if an additional condition occurs at runtime, we really have a deadlock:
« ”circular wait”

» Aclosed chain of processes exists, such that each process holds at least
one resource needed by the next process in the chain

Norwegian University of .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS Q&A S 4

Resource allocation graphs

* Visualize and also automatically detect
deadlock situations

A allocates R and requests S.
B allocates nothing but requests T.

» describe the current system state C allocates nothing but requests S.
D allocates U and S and requests T.
 nodes are pProcesses E allocates T and requests V.
and resources F allocates W and requests S.

G allocates V and requests U.

« edges show an allocation

or a request ._> A

« Acircle in the graph !
indicated a deadlock C
condition

e graph has to be updated
for each resource allocation
and deallocation

B

There is a circular waiting
condition between processes
D, E and G!

T

F

T
w

Norwegian University of .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS Q&A S 5

Dining philosophers problem

philosopher 4 \ philosopher 0
1l

* Philosophers are either thinking or
eating spaghetti
« Two forks required for eating philos. 3

* Philosophers can only take one s

fork after another philosopher 2
° TH : process — philosopher
necessary conditions are fulfilled resource — fork (indivisible)

 mutual exclusion: need both forks in order to eat

* hold and wait: neither take both forks at the same time nor have
the idea to put back a single fork

* no preemption: not appropriate to take another philosopher’s
fork while it is in use

* Does this necessarily lead to a deadlock?

« We discussed different solutions (incorrect, inefficient correct,
efficient correct) = check these out!

fork 4 fork 1

philos. 1

’ fork 2

Norwegian University of .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS Q&A S 6

Preventing deadlocks

* Indirect methods invalidate one of the conditions 1-3
1. use non blocking approaches
2. only allow atomic resource allocations
3. enable the preemption of resources using virtualization
* virtual memory, virtual devices, virtual processors
* Direct methods invalidate condition 4
4. introduce a linear/total order of resource classes:

* Resource Rjcan only be successfully allocated
before Rjif iis ordered linear before j (i.e. i <))

* Rules that prevent deadlocks
* Methods at design or implementation time
 Discussion of safe/unsafe states = check these out!

@ NTNU | sanetandrecnoiogy Operating Systems Q&A 5

Deadlock detection and resolution

« Common implementation:

* Deadlocks are (silently) accepted
(,ostrich algorithm®)

* Alternatives:
* create resource graph and search for cycles — O(n)
* tradeoffs between high overhead and waste of resources

« Resolution approaches (after detection):
 Terminate processes to release resources
 Preempt resources, start with the “most effective victim”
« Balance between damage and effort

* Little practical relevance in the context of operating systems

Norwegian University of .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS Q&A S 8

Souwrce code file -
hello.c, hello.cpp

Compilation proces ... T

Preprocessed code
file - hello.i

Preprocessor
. C Conpiler u
 Expands #includes and macros

Assembly code

Compiler file - hello.s
Assembler
 (enerates assembler source code . i/ :
Object code file | Relocation object code

from C source code - hello.o s et
Assembler Eiaimariinks edter Other chjects filefmodules

« (Generates object code from] Libray il

Executable code -

assembler source code hello, hello. axe
Linker ¥
« Combines (one or) multiple object cvotags mich s hard
files (+ libraries) to an executable Exacabie Txace
file . . —
when ranningfexecute the : Loader R']inm Eg;;ct.fdmis)f
rogram (a process) - raries ene
Loader posamlzr v
 Loads executable file into main
memory Proce:zaiceidress

Norwegian University of :
B NTNU ‘ Science and Technology Operatmf Primsre memnry =.g
DM

ELF file format and contents

Header with general information
ELF header < T BeT
(see previous slides)
Program header table |« Information on the ELF file segments
f Table of section headers with detailed

information on each segment

text 5

{ ELF Header:
Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00
Class: ELF32
.r()(iéitii Data: 2's complement, little endian
Version: 1 (current)
t 0S/ABI: UNIX - System V

ABI Version: 0
Type: REL (Relocatable file)
Machine: Intel 80386
Version: ox1

.data Entry point address: 0x0
Start of program headers: 0 (bytes into file)
Start of section headers: 644 (bytes into file)
Flags: 0x0

Section header tab|e Size of this header: 52 (bytes)

Size of program headers: 0 (bytes)
Number of program headers: 0
Size of section headers: 40 (bytes)
Number of section headers: 11
Section header string table index: 8

Norwegian University of .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS Q&A S 10

Linking and symbols

.0 object files cannot be executed T T

o - hello.o i irfermation
directly! i
Linkerlink editor Other objects fils/modules

e Important parts are missing: _— d Libraay fils
Xecut e Code -
e crt0— startup code hello, hello.exs

 initialization — variables in .bss are initialized (to 0), C++ constructors
o jump to "main" function and parameter passing (argc, argv, envp)
o libraries, e.g. libc (C standard library), have to be added

e Linker adds these and
S readelf -s foo.o
bU|IdS exeCUtabIe Symbol table '.symtab' contains 12 entries:
H Num: Value Size Type Bind Vis Ndx Name
°
Addresses Of varlables and 0: 00000000 0 NOTYPE LOCAL DEFAULT UND
H 1: 00000000 0 FILE LOCAL DEFAULT ABS foo.c
funCtlons are nOt rESOIVEd 2: 00000000 0 SECTION LOCAL DEFAULT 1
H 3: 00000000 0 SECTION LOCAL DEFAULT 3
°
One Of the maln taSkS 4: 00000000 0 SECTION LOCAL DEFAULT 4
1 5: 00000000 0 SECTION LOCAL DEFAULT 5
Of the Ilnker 6: 00000000 0 SECTION LOCAL DEFAULT 7
7: 00000000 0 SECTION LOCAL DEFAULT 6
8: 00000000 4 OBJECT GLOBAL DEFAULT 5 a
Symbols (.symtab) Addresses for symbolic names 10: 00000000 44 FUNC GLOBAL DEFAULT 1 main
y -SY y 11: 00000004 4 OBJECT GLOBAL DEFAULT COM c

Norwegian University of .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS Q&A S 1

Intro to virtual memory and process memory layout

Linux requires a memory management unit (MMU)

« Translates virtual to physical addresses using page table
« lllusion: every process has the complete address space for its own use
« Protection of (physical) memory from unwanted accesses

Granularity: "page" (e.g. 4096 bytes)

o TLB: cache for page table entries

Virtual Translation and Physical
memory checking mechanism memory Linear Address
31 22 21 12 11 0
. Directory Table | Offset |
L Translation
ProcessD | —— MMU tables
12 4-KByte Page

VRAM
ProcessC | ——

RAM 10 10 Page Table Physical Address

Page Directory
ProcessB | —— | ROM
TLB 5 RAM Page-Table Entry 0 >
_—
Process A TLB RAM » Directory Entry >
Manager | ———» RAM /327 1024 PDE * 1024 PTE = 220 Pages
T RAM CR3 (PDBR)
Protection and aborts *32 bits aligned onto a 4-KByte boundary.
Assignment of process virtual Page table structure
address spaces to physical memory (here: x86 architecture)

Norwegian University of .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS Q&A S 12

fork syscall

in detail

pid25 waits for termination of pid26,
pid26 executes exit(0) and terminates

pid=25 (h pid=26
.data \: :L[Resources } .data
text text
stack stack
process state v)< :& process state
kﬂ Files
<..> <..>
int cpid=fork();| |] int cpid=fork();
if (cpid==0) { |cpid=26 cpid=0 if (cpid==0) {

<child code>
exit(0);
}
<parent code>
»wait(cpid);

<child code>
» exit(0);

}
<parent code>
wait(cpid);

-

Unix kernel }

Norwegian University of .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS Q&A S 13

exec syscall

Kernel “removes” memory content

of pid26
A pid=26
Resources } .data
text
stack

process state

N«

Files

<..>

int cpid=fork();

if (cpid==0) {
exec(“foo0");
exit(0);

}

<parent code>

wait(cpid);

[Unix kernel }

@ NTNU | sanetandrecnoiogy Operating Systems Q&A 5

Overview Theoretical Exercise 3

Deadlocks and the software development process
Why?

« Deadlocks are an important problem that is hard to
reproduce (e.g., race conditions that might cause a deadlock
be rare) and difficult to debug

* The software development process is often hidden behind
complex Uls today (Eclipse...) and seems "magical”

* We want to give you a bit of an insight to gain back
control over what you compile and execute

Norwegian University of .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS Q&A S 15

The forum, once more

* We are currently diseussing setting up a Discourse server

e open source solution
(https://qithub.com/discourse/discourse)

 IDI has provided us with a VM (thanks!)

« Currently struggling with the Discourse system itself
and it's TLS certificate requirements

Norwegian University of .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS Q&A S 16

https://github.com/discourse/discourse

