
Operating Systems
Lecture overview and Q&A Session 5 – 14.2.2022 

Michael Engel



Operating Systems Q&A 5 2

Lectures 7 and 8
Concurrency: Deadlocks and Starvation 
• Deadlock definition, necessary and additional conditions 
• Resource allocation graphs 
• Dining philosophers problem 
• Preventing deadlocks, detection and resolution 
 
From source code to process  
• Compilation process 
• ELF file format and contents 
• Linking and symbols 
• Introduction to virtual memory and process memory layout 
• Fork and exec system calls in detail and program startup



Operating Systems Q&A 5 3

Deadlock definition

• Deadlock: passive waiting, process state is BLOCKED 
• Livelock: Active waiting (busy waiting/“lazy” busy waiting) 

• Arbitrary process state (including RUNNING), but none 
of the involved processes is able to proceed 

• Deadlocks are the “lesser evil” 
• This state is uniquely discoverable  
→ Basis to ”resolve” deadlocks is available 

• Active waiting results in an extremely high system load

Traffic rule:  
"Left yields to right" 
No car is allowed to proceed

„[…] a situation in which two or more 
processes are unable to proceed 
because each is waiting for one of the 
others to do something.“ 

[Stallings]



Operating Systems Q&A 5 4

Deadlocks: necessary and additional conditions

All of the following three conditions must be fulfilled for a deadlock to occur 
("necessary conditions"): 

1. Exclusive allocation of resources ("mutual exclusion") 
• Only one process may use a resource at a time. No process may access a 

resource unit that has been allocated to another process 
2. Allocation of additional resources ("hold and wait") 

• A process may hold allocated resources while awaiting assignment of 
other resources  

3. No removing of resources ("no preemption") 
• The OS is unable to forcibly remove a resource from a process once it is 

allocated 
4. Only if an additional condition occurs at runtime, we really have a deadlock: 

• ”circular wait” 
• A closed chain of processes exists, such that each process holds at least 

one resource needed by the next process in the chain 



Operating Systems Q&A 5 5

Resource allocation graphs
• Visualize and also automatically detect  

deadlock situations 
• describe the current system state 
• nodes are processes  

and resources 
• edges show an allocation  

or a request 
• A circle in the graph  

indicated a deadlock  
condition 
• graph has to be updated 

for each resource allocation 
and deallocation

There is a circular waiting 
condition between processes 

D, E and G!

R A

SC

F

W

D T E

B

U

G

V

A allocates R and requests S. 
B allocates nothing but requests T. 
C allocates nothing but requests S. 
D allocates U and S and requests T. 
E allocates T and requests V. 
F allocates W and requests S. 
G allocates V and requests U.



Operating Systems Q&A 5 6

Dining philosophers problem
• Philosophers are either thinking or  

eating spaghetti 
• Two forks required for eating 
• Philosophers can only take one  

fork after another 
• necessary conditions are fulfilled 

• mutual exclusion: need both forks in order to eat 
• hold and wait: neither take both forks at the same time nor have 

the idea to put back a single fork 
• no preemption: not appropriate to take another philosopher’s 

fork while it is in use 
• Does this necessarily lead to a deadlock? 
• We discussed different solutions (incorrect, inefficient correct,  

efficient correct) ➙ check these out!

 process → philosopher 
resource → fork (indivisible)

fork 0

fork 4

fork 3 fork 2

fork 1

philosopher 0

philos. 1

philosopher 2

philos. 3

philosopher 4



Operating Systems Q&A 5 7

Preventing deadlocks
• Indirect methods invalidate one of the conditions 1–3 

1. use non blocking approaches 
2. only allow atomic resource allocations 
3. enable the preemption of resources using virtualization 

• virtual memory, virtual devices, virtual processors 
• Direct methods invalidate condition 4 

4. introduce a linear/total order of resource classes: 
• Resource Ri can only be successfully allocated 

before Rj if i is ordered linear before j (i.e. i < j) 
• Rules that prevent deadlocks 

• Methods at design or implementation time 
• Discussion of safe/unsafe states ➙ check these out!



Operating Systems Q&A 5 8

Deadlock detection and resolution
• Common implementation: 

• Deadlocks are (silently) accepted  
(„ostrich algorithm“) 

• Alternatives: 
• create resource graph and search for cycles → O(n) 
• tradeoffs between high overhead and waste of resources 

• Resolution approaches (after detection): 
• Terminate processes to release resources 
• Preempt resources, start with the “most effective victim”  
• Balance between damage and effort 

• Little practical relevance in the context of operating systems



Operating Systems Q&A 5 9

Compilation process
Preprocessor 
• Expands #includes and macros 
Compiler 
• Generates assembler source code 

from C source code 
Assembler 
• Generates object code from 

assembler source code 
Linker 
• Combines (one or) multiple object 

files (+ libraries) to an executable 
file 

Loader 
• Loads executable file into main 

memory



Operating Systems Q&A 5 10

ELF file format and contents
Header with general information 
(see previous slides)

Information on the ELF file segments

Table of section headers with detailed 
information on each segment



Operating Systems Q&A 5 11

Linking and symbols
.o object files cannot be executed 
directly! 

• Important parts are missing: 
• crt0 – startup code 

• initialization – variables in .bss are initialized (to 0), C++ constructors 
• jump to "main" function and parameter passing (argc, argv, envp) 

• libraries, e.g. libc (C standard library), have to be added 
• Linker adds these and  

builds executable 
• Addresses of variables and  

functions are not resolved 
• One of the main tasks  

of the linker

ELF Section Function

Symbols (.symtab) Addresses for symbolic names

$ readelf -s foo.o 

Symbol table '.symtab' contains 12 entries:
   Num:    Value  Size Type    Bind   Vis      Ndx Name
     0: 00000000     0 NOTYPE  LOCAL  DEFAULT  UND 
     1: 00000000     0 FILE    LOCAL  DEFAULT  ABS foo.c
     2: 00000000     0 SECTION LOCAL  DEFAULT    1 
     3: 00000000     0 SECTION LOCAL  DEFAULT    3 
     4: 00000000     0 SECTION LOCAL  DEFAULT    4 
     5: 00000000     0 SECTION LOCAL  DEFAULT    5 
     6: 00000000     0 SECTION LOCAL  DEFAULT    7 
     7: 00000000     0 SECTION LOCAL  DEFAULT    6 
     8: 00000000     4 OBJECT  GLOBAL DEFAULT    5 a
     9: 00000000     4 OBJECT  GLOBAL DEFAULT    3 b
    10: 00000000    44 FUNC    GLOBAL DEFAULT    1 main
    11: 00000004     4 OBJECT  GLOBAL DEFAULT  COM c



Operating Systems Q&A 5 12

Intro to virtual memory and process memory layout

Linux requires a memory management unit (MMU) 
• Translates virtual to physical addresses using page table 

• Illusion: every process has the complete address space for its own use 
• Protection of (physical) memory from unwanted accesses 
• Granularity: "page" (e.g. 4096 bytes) 
• TLB: cache for page table entries

Assignment of process virtual  
address spaces to physical memory

Page table structure 
(here: x86 architecture)



Operating Systems Q&A 5 13

fork syscall in detail

pid=25
Resources

Files

.text
.data

stack

process state

Unix kernel

<…>
int cpid=fork();
if (cpid==0) {
  <child code>
  exit(0);
}
<parent code>
wait(cpid);

pid=26

.text
.data

stack

process state

<…>
int cpid=fork();
if (cpid==0) {
  <child code>
  exit(0);
}
<parent code>
wait(cpid);

cpid=26 cpid=0

pid25 waits for termination of pid26, 
pid26 executes exit(0) and terminates

13



Operating Systems Q&A 5

exec syscall

14

Resources

Files

Unix kernel

pid=26

.text
.data

stack

process state

<…>
int cpid=fork();
if (cpid==0) {
  exec(“foo”);
  exit(0);
}
<parent code>
wait(cpid);

cpid=0

Kernel “removes” memory content 
of pid26



Operating Systems Q&A 5 15

Overview Theoretical Exercise 3
Deadlocks and the software development process 

Why? 

• Deadlocks are an important problem that is hard to 
reproduce (e.g., race conditions that might cause a deadlock 
be rare) and difficult to debug 

• The software development process is often hidden behind 
complex UIs today (Eclipse…) and seems "magical" 
• We want to give you a bit of an insight to gain back 

control over what you compile and execute



Operating Systems Q&A 5 16

The forum, once more
• We are currently discussing setting up a Discourse server 

• open source solution  
(https://github.com/discourse/discourse) 

• IDI has provided us with a VM (thanks!) 
• Currently struggling with the Discourse system itself 

and it’s TLS certificate requirements 

https://github.com/discourse/discourse

