B NTNU | sioncindrecnoivay

Operating Systems

Lecture overview and Q&A Session 4 — 7.2.2022

Michael Engel

Lectures 5 and 6

Threads

* Overhead of process creation

« Lightweight processes — threads and fibers
 Threads in Linux and Windows

« Duff’'s Device

Concurrency: Mutual Exclusion and Synchronization
« Synchronization problems — race conditions

 Critical sections

* Locks — examples: bakery algorithm, atomic operations
« Semaphores

* Monitors

@ NTNU | sanetandrecnoiogy Operating Systems Q&A 4

Threads — Overhead of process creation

« Copying the address space when forking takes a lot of time
* Fast process creation when immediately calling exec
* Modern solution: copy on write

« Other approach to implement parallel activities: Threads
» Difference processes « threads
* Processes have separate address spaces

* Ensured by copy on write (read-only pages can be
shared)

« Threads of a process share a single address space
* Threads have separate execution paths
« Each thread still needs a separate stack

Norwegian University of .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS Q&A 4 3

Threads in Linux and Windows

 Windows:

* Process: provides environment and address space for
threads

« But has no execution context in itself!
 AWIn32 process always contains at least one thread
« Thread: unit executing code
e Linux:
« processes without threads are the traditional Unix model

« Linux implements POSIX threads using the pthreads
library

 all threads and processes are internally managed as tasks
« scheduler does not differentiate between those

Norwegian University of .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS Q&A 4 4

Lightweight processes — threads vs. fibers

« user-level threads, green threads or featherweight processes
* Implemented on application level only
« operating system doesn’t know about them
 thus, scheduling affects the whole process
* Advantages:
« Extremely fast context switch — No switch to kernel mode
« Every application can choose best suited library
* Disadvantages:

» Blocking a single fiber leads to blocking the whole
process (since the OS doesn’t know about fibers)

* No speed advantage from multiprocessor systems

Norwegian University of .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS Q&A 4 5

Duff’s Device

« Abad hack that was used in production (in the 1970s...)

« Basic idea (code fixed to compile on modern Unix):

« reduce loop overhead by unrolling

« abuse the C compilerby ...

jumping into the middle . send(short *to, short *from, int count)

{

number of unrolled

of a loop . intn=(count +7)/8; 4 o-joop iterations

« This worked because switch (count % 8) {

the compiler (used to)
generate a jJump back
to the start of the loop
when compiling the :
while instruction L5 %

at end of do-loop

* Please don't write code T
like this... 3}

*to = *from++;
*to = *from++;
*to = *from++;
*to = *from++;
*to = *from++;
*to = *from++;
: *to = *from++;

} while (--n > 0);

@ NTNU | sanetandrecnoiogy Operating Systems Q&A 4

do { *to = *from++;

first iteration jumpS:
here for :
count = 3,11,19,...:

Concurrency — Synchronization problems — race conditions

« Remember — threads share code and data

* Access to shared data by two or more threads is error-
prone

« Race condition

* multiple processes access shared data concurrently and
at least one of the processes manipulates the data

 the resulting value of the shared data is dependent on
the order of access by the processes

* result is therefore not predictable and can also be
incorrect in case of overlapping accesses!

« Synchronization required to ensure safe concurrent access
« creates an order for the activities of concurrent processes

Norwegian University of .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS Q&A 4 7

Critical sections

* In the case of a race condition, N processes compete for the access to
shared data
« The code fragments accessing these critical data are called critical
sections
* Problem
* We need to ensure that only a single process can be in the critical
section at the same time

» Solution: Lock variables with operations wait and signal

Semaphore lock; /* = 1: use semaphore as lock variable */
void enqueue (struct list *list, struct element *item) {
item->next = NULL;

wait (&lock); // try to obtain the lock
*list->tail = item; // this 1is the
list->tail = &item->next; // critical section!
signal (&lock) ; // release the lock

}

Norwegian University of .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS Q&A 4 8

Locks

Different approaches to implement locks:

- Bakery algorithm

« Assign waiting number to process that wants to enter a
critical section

* Admission to critical section in order of waiting numbers
« Slow, problematic for multicore systems

 Atomic operations

« read/modify/write a memory location in a single cycle

« cannot be interrupted by other processes or cores

* requires hardware support — special machine instruction
* Interrupt control

« Disable interrupt before, enable after critical section

« Large overhead, not useful on multicores

@ NTNU | sanetandrecnoiogy Operating Systems Q&A 4

Semaphores

Semaphore:
“a non-negative integer number’ with two atomic operations

« acquire using "p"/"down"/"wait" (different names)

« if the semaphore has the value 0, the process calling p is
blocked

« otherwise, the semaphore value is decremented and the critical
section can be entered

 release using "v"/"up"/"signal”
« if a process waiting for the semaphore (due to a previous call to
p), it is unblocked

« otherwise, the semaphore is incremented by 1

« Semaphores are an operating system abstraction to exchange
synchronization signals between concurrent processes

« Complex use patterns, e.g. different reader/writer problems

Norwegian University of .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS Q&A 4 10

Monitors

A monitor is an abstract data type with implicit
synchronization properties

« multilateral synchronization at the interface to the monitor

 mutual exclusion of the execution of all monitor
methods

* unilateral synchronization inside of the monitors using
condition variables

» wait blocks a process until a signal or condition
occurs and implicitly releases the monitor again

 signal indicates that a signal or condition has
occurred and unblocks (exactly one or all) processes
blocking on this event

Monitors require support by the programming language

Norwegian University of .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS Q&A 4 1

Q&As — Processes

Why is it important that a parent process needs to check upon (with
wait()) a child process that has terminated?

From the Linux wait (2) manpage:

In the case of a terminated child, performing a wait allows the system to
release the resources associated with the child; if a wait is not
performed, then the terminated child remains in a "zombie" state.

A child that terminates, but has not been waited for becomes a "zombie".
The kernel maintains a minimal set of information about the zombie
process (PID, termination status, resource usage information) in order to
allow the parent to later perform a wait to obtain information about the
child.

As long as a zombie is not removed from the system via a wait, it will
consume a slot in the kernel process table, and if this table fills, it will not
be possible to create further processes. If a parent process terminates,
then its "zombie" children (if any) are adopted by init (1), [...];

init (1) automatically performs a wait to remove the zombies.

Norwegian University of .
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS Q&A 4 12

Q&As — Processes

 What is an exit status for a process?

* The exit status is an integer number. 0 exit status means the command
was successful without any errors. A non-zero (1-255 values) exit status
means command was a failure.

) . explicit call to exit (> syscall)
int main(int argc, char **argv) {| _ neverreturns

exit(42); / implicit call to exit when main

Y returns (startup code in crt0)

A program doesn’t start at main! int maintint argc, char **argv) {
...Instead, there is startup code in

crt0 that is automatically linked return 42;

and which calls main, which has i

an int return type.
See lecture 8 for some details on crtO (C runtime zero) and program startup.

Norwegian University of .
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS Q&A 4 13

Q&As — Processes

* How can | use the exit status?

« |If a program is started from the shell, the shell variable $? contains the
exit status value of the last executed command:

ls
5 farg.c does not exist, trying

foo.c // to delete it fails > $? = 1
$ rm farg.c; echo $?

1
$ touch farg.c; rm farg.c; echo $? We create farg. c first, then try
0 to delete it > works > $? = 0

Norwegian University of .
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS Q&A 4 14

Q&As — Processes

* How can | use the exit status?

« |f a child process is created using fork (the shell also does this, of
course), the exit value can be obtained using wait(2):

int status; _— parent process waits for

if (fork() > 0) { termination of child, passes
pid = wait(&status): pointer to status variable
printf("End of proc %d\n", pid); If process exited normally

if (WIFEXITED(status)) ({ // (other reason could be killed
printf("Process exit(%d).\n", by a signal — WIF>IGNALED)

WEXITSTATUS (status)) e—w12 Extract the exit code from
} [the status variable using
} See example code ga4_wait.c on the web page WEXITSTATUS
#define _ WEXITSTATUS(status) (((status) & OxffOO) >> 8)
#define _ WTERMSIG(status) ((status) & Ox7f)
#define _ WIFEXITED(status) (__WTERMSIG(status) == 0)

/usr/include/x86_64-1inux-gnhu/bits/waitstatus.h

Norwegian University of .
E NTNU ‘ Sciencégand Technolggy Operatmg SyStemS Q&A 4 15

https://folk.ntnu.no/michaeng/tdt4186_22/sources/qa4_wait.c

Q&As — Threads

» Hva er forskjellen mellom kernel level og user level threads, og nar bruker man
hva?

« Kernel threads are scheduled by the kernel (D’oh!), i.e. each thread has an entry
in a kernel table and can thus be scheduled. Linux implements kernel threads as
processes that share an address space. In tools like htop, the threads show up
with separate process ids:

108524 me 20 0 19024 636 552 S 0.
108525 me 20 0 19024 636 552 S 0.

0
0
108523 me 20 0 19024 636 552 S 0.0

See example code ga4_pthreads.c linked on the course web page

« User mode threads have a lower switching overhead since it's just a "goto" (jump)
« Multi-threaded (User-level) applications cannot take advantage of
multiprocessing. Why?

» The OS does not know multiple threads exist inside of a process. A process is
(without kernel threads) always assigned to a single core, switching between user
threads is an operation like any other process operation

Norwegian University of .
E NTNU ‘ Sciencégand Technolggy Operatmg SyStemS Q&A 4 16

https://folk.ntnu.no/michaeng/tdt4186_22/sources/qa4_pthreads.c

Q&As — Threads

» Let's say | have an app (a process) with two threads, where one has the
responsibility to upload real time data to a server and the other for something
else. As a gamer, will we need to implement user level threads? Or how is it
done?

» There are libraries for user mode as well as kernel mode threads in Linux/Unix.
The commonly used library is called pthreads (POSIX threads, see the
previous example)

» Pthreads could be implemented as user-mode threads — it’s just a portable
specification how to use OS-specific threads. However, all implementations |
have seen use kernel threads

« We will supply a pthreads tutorial later this week!

« The original threading library in Java, GreenThreads, was a user-level threading
implementation

* You could create user-level threads (see the protothreads example from
lecture 5), e.g. using the setjmp/longjmp calls

* Linux has additional support, see setcontext (2) and makecontext (3)

Norwegian University of .
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS Q&A 4 7

Q&As — Windows?

 How to compile and run code if you have a Windows machine?

 The Windows Subsystem
for Linux (WSL) is a
virtual machine* that allows
to run a Linux system
from within Windows 10/11

e Different Linux distributions
« If you are new to Linux,

try Ubuntu
* You can use your preferred - |
. . * This is true for the current version WSL2,
Windows editor the previous WSL1 used a Linux system call

emulation on top of the Windows kernel.

 See details at
https://docs.microsoft.com/en-us/windows/wsl/install

Norwegian University of .
E NTNU ‘ Sciencégand Technolggy Operatmg SyStemS Q&A 4 18

https://docs.microsoft.com/en-us/windows/wsl/install

Q&As — Compiling code?

« How to compile and run code on Linux/macOS/WSL?
« Simply on the command line (shell):

Call the gcc compiler to
<+— compile "prog.c" and
link an executable "prog"

The prompt "$" is $ gcc -0 prog prog.c
printed by the shell $./prog # run it!

What if you have multiple source code files?

$ gcc -o prog filel.c file2.c # or

$ gcc -c filel.c # create object file filel.o
$ gcc -c file2.c # create object file file2.o0
$ gcc -o prog filel.o file2.0 # link executable

* On (Ubuntu) Linux (also in WSL) you need the build-essentials package:
sudo apt install build-essential

 On macOS, install Xcode from the App Store or from Terminal.app:
xcode-select --install

* For more complex programs use Makefiles — https://makefiletutorial.com

Norwegian University of .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS Q&A 4 19

https://makefiletutorial.com

Overview Theoretical Exercise 2

It's all about parallel execution, semaphores and deadlocks
Why?

 parallel programming is hard and error-prone
« we do not teach it in the first semesters
« ...but almost all computers have multiple cores today
« operating systems implement and require parallel activities

* e.g. to share data between an interrupt handler and the
OS kernel

@ NTNU | sanetandrecnoiogy Operating Systems Q&A 4

20

The forum question

 We are currently discussing setting up a Discourse server

e open source solution
(https://qithub.com/discourse/discourse)

* the maths department seems to use it as well as
TDT4120...

 Still work in progress — sorry...

@ NTNU | sanetandrecnoiogy Operating Systems Q&A 4

21

https://github.com/discourse/discourse

