
System Software (2)

Peter Marwedel

TU Dortmund, Informatik 12

Germany

2013年 11 月 26 日 These slides use Microsoft clip arts. Microsoft copyright restrictions apply.

©
 S

p
ri
n
g
e
r,

 2
0
1
0

 - 2 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Structure of this course

2:

Specification

3:

ES-hardware

4: system

software (RTOS,

middleware, …)

8:

Test

5: Evaluation &

validation (energy, cost,

performance, …)

7: Optimization

6: Application

mapping

A
p
p
lic

a
ti
o
n
 K

n
o
w

le
d
g
e

 Design

repository
Design

Numbers denote sequence of chapters

 - 3 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Increasing design complexity + Stringent time-to-

market requirements Reuse of components

Reuse requires knowledge from previous designs

to be made available in the form of

intellectual property (IP, for SW & HW).

 HW

 Operating systems

 Middleware (Communication libraries, data bases, …)

 ….

 - 4 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Priority Inheritance Protocol (PIP)

 Priority Ceiling Protocol (PCP)

The Priority Inheritance Protocol (PIP)

 does not prevent deadlocks

 can lead to chained blocking

• (Several lower priority tasks can block a higher priority task)

 and has inherent static priorities of tasks

The Priority Ceiling Protocol (PCP)

 avoids multiple blocking

 guarantees that, once a task has entered a critical section,

it cannot be blocked by lower priority tasks until its

completion.
Source: http://www.ida.liu.se/~unmbo/RTS_CUGS_files/Lecture3.pdf

 - 5 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

PCP

 A task is not allowed to enter a critical section if there are

already locked semaphores which could block it eventually

 Hence, once a task enters a critical section, it can not be

blocked by lower priority tasks until its completion.

 This is achieved by assigning priority ceiling.

 Each semaphore Sk is assigned a priority ceiling C(Sk).

It is the priority of the highest priority task that can lock Sk.

This is a static value.

Source: http://www.ida.liu.se/~unmbo/RTS_CUGS_files/Lecture3.pdf

 - 6 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Priority Ceiling: Example

Source: http://www.ida.liu.se/

~unmbo/RTS_CUGS_files/Lecture3.pdf

 - 7 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

PCP

 Suppose T is running and wants to lock semaphore Sk.

 T is allowed to lock Sk only if

priority of T > priority ceiling C(S*) of the semaphore S*

where:

• S* is the semaphore with the highest priority ceiling

among all the semaphores which are currently locked

by jobs other than T.

• In this case, T is said to blocked by the semaphore S*

(and the job currently holding S*)

• When T gets blocked by S * then the priority of T is

transmitted to the job T that currently holds S*

S
o

u
rc

e
:
h

tt
p

:/
/w

w
w

.i
d

a
.l
iu

.s
e

/
~

u
n

m
b

o
/R

T
S

_
C

U
G

S
_
fi
le

s
/L

e
c
tu

re
3

.p
d
f

 - 8 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

PCP: An Example

S
o

u
rc

e
:
h

tt
p

:/
/w

w
w

.i
d

a
.l
iu

.s
e

/
~

u
n

m
b

o
/R

T
S

_
C

U
G

S
_
fi
le

s
/L

e
c
tu

re
3

.p
d
f

 - 9 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

PCP: An Example

S
o

u
rc

e
:
h

tt
p

:/
/w

w
w

.i
d

a
.l
iu

.s
e

/
~

u
n

m
b

o
/R

T
S

_
C

U
G

S
_
fi
le

s
/L

e
c
tu

re
3

.p
d
f

 - 10 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

PCP

 When T* leaves a critical section guarded by S* then it

unlocks S* and the highest priority job, if any, which is

blocked by S* is awakened

 The priority of T* is set to the highest priority of the job

that is blocked by some semaphore that T* is still

holding.

If none, the priority of T* is set to be its nominal one.

S
o

u
rc

e
:
h

tt
p

:/
/w

w
w

.i
d

a
.l
iu

.s
e

/
~

u
n

m
b

o
/R

T
S

_
C

U
G

S
_
fi
le

s
/L

e
c
tu

re
3

.p
d
f

 - 11 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

PCP: Example

S
o

u
rc

e
:
h

tt
p

:/
/w

w
w

.i
d

a
.l
iu

.s
e

/

~
u

n
m

b
o
/R

T
S

_
C

U
G

S
_
fi
le

s
/L

e
c
tu

re
3

.p
d
f

t6 : T3 unlocks S1. It awakens T1. But T3s (inherited) priority is now only P2 while

P1>C(S2) =P2. So T1 preempts T3 and runs to completion.

t7: T3 resumes execution with priority P2

t8 : T3 unlocks S2, goes back to its priority P3. T2 preempts T3, runs to completion

 - 12 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

PCP: Example (1)

S
o

u
rc

e
:
L

u
n

d
 U

n
iv

e
rs

it
y,

 c
o

u
rs

e
 E

D
A

 0
4

0
,

h
tt

p
:/

/f
ile

a
d

m
in

.c
s
.l
th

.s
e

/c
s
/E

d
u
c
a
ti
o

n
/E

D
A

0
4
0

/l
e
c
tu

re
/R

T
P

-F
6
b
.p

d
f

 - 13 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

PCP: Example (2)

See

http://fileadmin.

cs.lth.se/cs/Ed

ucation/EDA04

0/lecture/RTP-

F6b.pdf for

detailed

explanation

 - 14 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

PCP: Properties

 deadlock free (only changing priorities)

 a given task i is delayed at most once by a lower priority

task

 the delay is a function of the time taken to execute the

critical section

 Certain variants as to when the priority is changed

 - 15 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Extending PCP: Stack Resource Policy (SRP)

 SRP supports dynamic priority scheduling

 SRP blocks the task at the time it attempts to preempt.

 Preemption level li of task i: decreasing function of

deadline (larger deadline  easier to preempt) (Static)

 Resource ceiling: of a resource is the highest preemption

level from among all tasks that may access that resource

(Static)

 System ceiling: is the highest resource ceiling of all the

resources which are currently blocked (dynamic, changes

with resource accesses)

Source: http://www.ida.liu.se/~unmbo/RTS_CUGS_files/Lecture3.pdf

 - 16 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

SRP Policy

A task can preempt another task if

 it has the highest priority

 and its preemption level is higher than the system ceiling

A task is not allowed to start until the resources currently

available are sufficient to meet the maximum requirement of

every task that could preempt it.

Why Stack Resource Policy? Tasks cannot be blocked by

tasks with lower li, can resume only when the task completes.

Tasks on the same li can share stack space.

More tasks on the same li  higher stack space saving.

Source: http://www.ida.liu.se/~unmbo/RTS_CUGS_files/Lecture3.pdf

 - 17 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

SRP vs. PCP

a

SRP

PCP

Less preemptions

for SRP

Source: http://www.ida.liu.se/

~unmbo/RTS_CUGS_files/ Lecture3.pdf

 - 18 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Increasing design complexity + Stringent time-to-

market requirements Reuse of components

Reuse requires knowledge from previous designs

to be made available in the form of

intellectual property (IP, for SW & HW).

 HW

 Operating systems

 Middleware (Communication libraries, data bases, …)

 ….

 - 19 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Models of computation considered in this course

Communication/

local computations

Shared

memory

Message passing

Synchronous | Asynchronous

Undefined

components

 Plain text, use cases

 | (Message) sequence charts

Communicating finite

state machines

StateCharts SDL

Data flow Scoreboarding +
Tomasulo Algorithm

( Comp.Archict.)

Kahn networks,

SDF

Petri nets C/E nets, P/T nets, …

Discrete event (DE)

model

VHDL*,

Verilog*,

SystemC*, …

Only experimental systems, e.g.

distributed DE in Ptolemy

Imperative (Von

Neumann) model

C, C++, Java

[libraries]

C, C++, Java with libraries

CSP, ADA |
* Classification based on semantic model

 - 20 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Pthreads

 Shared memory model

 Consists of standard API
- Originally used for single processor

- Locks (mutex, read-write locks)

Based on W. Verachtert (IMEC):

Introduction to Parallelism,

tutorial, DATE 2008

 - 21 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

PThreads Example

threads = (pthread_t *) malloc(n*sizeof(pthread_t));

pthread_attr_init(&pthread_custom_attr);

for (i=0;i<n; i++)

 pthread_create(&threads[i],

&pthread_custom_attr, task, …);

for (i=0;i<n; i++) {

 pthread_mutex_lock(&mutex);

 <receive message>

 pthread_mutex_unlock(&mutex);

}

for (i=0;i<n; i++)

 pthread_join(threads[i], NULL);

void* task(void *arg) {

 …

 pthread_mutex_lock(&mutex);

 <send message>

 pthread_mutex_unlock(&mutex);

 return NULL

}

Based on W. Verachtert (IMEC):

Introduction to Parallelism,

tutorial, DATE 2008

 - 22 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Pthreads

 Consists of standard API

- Locks (mutex, read-write locks)

- Condition variables

- Completely explicit synchronization

- Synchronization is very hard to program correctly

 Typically supported by a mixture of hardware (shared memory) and

software (thread management)

 Exact semantics depends on the memory consistency model

 Support for efficient producer/consumer parallelism relies on murky

parts of the model

 Pthreads can be used as back-end for other programming models (e.g.

OpenMP)

Based on W. Verachtert (IMEC):

Introduction to Parallelism,

tutorial, DATE 2008

 - 23 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

OpenMP

Implementations target shared memory hardware

Parallelism expressed using pragmas
 Parallel loops

(#pragma omp for {…} ;focus: data parallelism)

 Parallel sections

 Reductions

Explicit
 Expression of parallelism (mostly explicit)

Implicit
 Computation partitioning

 Communication

 Synchronization

 Data distribution

Lack of control over partitioning can cause problems

Based on W. Verachtert (IMEC):

Introduction to Parallelism,

tutorial, DATE 2008

 - 24 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Models of computation considered in

this course

Communication/

local computations

Shared

memory

Message passing

Synchronous | Asynchronous

Undefined

components

 Plain text, use cases

 | (Message) sequence charts

Communicating finite

state machines

StateCharts SDL

Data flow (Not useful)° Kahn networks,

SDF

Petri nets C/E nets, P/T nets, …

Discrete event (DE)

model

VHDL*,

Verilog*,

SystemC*, …

Only experimental systems, e.g.

distributed DE in Ptolemy

Imperative (Von

Neumann) model

C, C++, Java

[libraries]

C, C++, Java with libraries

CSP, ADA |
* Classification based on semantic model

° Somewhat related: Scoreboarding + Tomasulo-Algorithm

 - 25 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

OSEK/VDX COM

OSEK/VDX COM

 is a special communication standard

for the OSEK automotive OS Standard

 provides an “Interaction Layer” as an

API for internal and external

communication via a “Network Layer”

and a “Data Link” layer (some

requirements for these are specified)

 specifies the functionality, it is not an

implementation.

© P. Marwedel, 2011

ECU-1 ECU-2

 - 26 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

CORBA

(Common Object Request Broker Architecture)

Software package for access to remote objects;

Information sent to Object Request Broker (ORB) via local

stub.

ORB determines location to be accessed and sends

information via the IIOP I/O protocol.

Access times

unpredictable.

Server

 - 27 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Real-time (RT-) CORBA

RT-CORBA

 provides end-to-end predictability of

timeliness in a fixed priority system.

 respects thread priorities between

client and server for resolving

resource contention,

 provides thread priority management,

 provides priority inheritance,

 bounds latencies of operation

invocations,

 provides pools of preexisting threads.

In
v
e
rs

io
n

Server

 - 28 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Message passing interface (MPI)

 Asynchronous/synchronous message

passing

 Designed for high-performance computing

 Comprehensive, popular library

 Available on a variety of platforms

 Mostly for homogeneous multiprocessing

 Considered for MPSoC programs for ES;

 Includes many copy operations to memory

(memory speed ~ communication speed

for MPSoCs); Appropriate MPSoC

programming tools missing.
http://www.mhpcc.edu/training/workshop/mpi/MAIN.html#Getting_Started

© Photos: Microsoft; De Man/NXP

 - 29 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

MPI (1)

Sample blocking library call (for C):

 MPI_Send(buffer,count,type,dest,tag,comm) where

- buffer: Address of data to be sent

- count: number of data elements to be sent

- type: data type of data to be sent

(e.g. MPI_CHAR, MPI_SHORT, MPI_INT, …)

- dest: process id of target process

- tag: message id (for sorting incoming messages)

- comm: communication context = set of processes for

which destination field is valid

- function result indicates success

http://www.mhpcc.edu/training/workshop/mpi/MAIN.html#Getting_Started

 - 30 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

MPI (2)

Sample non-blocking library call (for C):

 MPI_Isend(buffer,count,type,dest,tag,comm,request)

where

- buffer … comm: same as above

- request: unique "request number". "handle" can be

used (in a WAIT type routine) to determine completion

http://www.mhpcc.edu/training/workshop/mpi/MAIN.html#Getting_Started

 - 31 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Evaluation

Explicit

 Computation partitioning

 Communication

 Data distribution

Implicit

 Synchronization (implied by communic., explicit possible)

 Expression of parallelism (implied)

 Communication mapping

Properties

 Most things are explicit

 Lots of work for the user (“assembly lang. for parallel prog.”)

 doesn’t scale well when # of processors is changed heavily

Based on W. Verachtert (IMEC):

Introduction to Parallelism,

tutorial, DATE 2008

 - 32 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

RT-issues for MPI

 MPI/RT: a real-time version of MPI

[MPI/RT forum, 2001].

 MPI-RT does not cover issues such as

thread creation and termination.

 MPI/RT is conceived as a potential layer

between the operating system and

standard (non real-time) MPI.

MPI

MPI-RT

OS

 - 33 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Universal Plug-and-Play (UPnP)

 Extension of the plug-and-play concept

 Enable emergence of easily connected

devices & simplify implementation of

networks @ home & corporate environments!

 Examples: Discover printers, storage space,

control switches in homes & offices

 Exchanging data, no code

(reduces security hazards)

 Agreement on data formats & protocols

 Classes of predefined devices (printer,

mediaserver etc.)

 http://upnp.org
© P. Marwedel, 2012

 - 34 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

 Devices Profile for Web Services (DPWS)

 More general than UPnP

 … DPWS defines a minimal set of

implementation constraints to enable secure

Web Service messaging, discovery, description,

and eventing on resource-constrained devices.

…

 DPWS specifies a set of built-in services:

- Discovery services …

- Metadata exchange services…

- Publish/subscribe eventing services…

 Lightweight protocol, supporting dynamic

discovery, … its application to automation

environments is clear.

http://en.wikipedia.org/wiki/Devices_

Profile_for_Web_Services

 - 35 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Network Communication Protocols

- e.g. JXTA -

 Open source peer-to-peer protocol specification.

 Defined as a set of XML messages that allow any

device connected to a network to exchange

messages and collaborate independently of the

network topology.

 .. Can be implemented in any modern computer

language.

 JXTA peers create a virtual overlay network,

allowing a peer to interact with other peers even

when some of the peers and resources are behind

firewalls and NATs or use different network

transports.

http://en.wikipedia.org/

wiki/JXTA

 - 36 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Increasing design complexity + Stringent time-to-

market requirements Reuse of components

Reuse requires knowledge from previous designs

to be made available in the form of

intellectual property (IP, for SW & HW).

 HW

 Operating systems

 Middleware (Communication libraries, data bases, …)

 ….

 - 37 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Data bases

Goal: store and retrieve persistent information

Transaction= sequence of read and write operations

Changes not final until they are committed

Requested (“ACID”) properties of transactions

1. Atomic: state information as if transaction is either

completed or had no effect at all.

2. Consistent: Set of values retrieved from several accesses

to the data base must be possible in the world modeled.

3. Isolation: No user should see intermediate states of

transactions

4. Durability: results of transactions should be persistent.

Source: Krishna, Shin, 1997

 - 38 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Real-time data bases

Problems with implementing real-time data bases:

1. transactions may be aborted various times before

they are finally committed.

2. For hard discs, the access times to discs are

hardly predictable.

Possible solutions:

1. Main memory data bases

2. Relax ACID requirements

Source: Krishna, Shin, 1997

 - 39 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Summary

 Communication middleware

• Pthreads

• OpenMP

• OSEK/VDX COM

• CORBA

• MPI

• JXTA

• DPWS

 RT-Data bases (brief)

 - 40 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

RESERVE

 - 41 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

Priority Ceiling Protocol (PCP)

Restrictions on how we can lock (Wait, EnterMonitor) and

unlock (Signal, LeaveMonitor) resources:

 a task must release all resources between invocations

 the computation time that a task i needs while holding

semaphore s is bounded. csi,s = the time length of the

critical section for task i holding semaphore s

 a (fixed set of) tasks may only lock semaphores from a

fixed set of semaphores known a priory.

uses(i)=the set of semaphores that may be used by task i

L. Sha, R. Rajkumar, J. Lehoczky, Priority Inheritance Protocols: An Approach to Real-Time Synchronization,

IEEE Transactions on Computers, Vol. 39, No. 9, 1990

Source: Lund University, course EDA 040, http://fileadmin.cs.lth.se/cs/Education/EDA040/lecture/RTP-F6b.pdf

 - 42 -
 p. marwedel,

informatik 12, 2013

TU Dortmund

PCP: the protocol

 The ceiling of a semaphore, ceil(s), is the priority of the

highest priority task that uses the semaphore

 pri(i) is the priority of task i

 At run-time:

• a task i can only lock a semaphore s, if pri(i) > ceilings

of all semaphores currently locked by other tasks

• if  (pri(i) > ceilings of all …): task i will be blocked
(task i is said to be blocked on the semaphore, S∗, with the highest

priority ceiling of all semaphores currently locked by other jobs and

task i is said to be blocked by the task that holds S∗)

• when task i is blocked on S∗, the task currently holding

S∗ inherits the priority of task i

Source: Lund University, course EDA 040, http://fileadmin.cs.lth.se/cs/Education/EDA040/lecture/RTP-F6b.pdf

