
Operating Systems
Lecture 18: Cloud Operating Systems

Michael Engel

Operating Systems 18: Cloud, Unikernels, … 2

Cloud computing
• According to the US National Institute of Standards and

Technology, a Cloud has five properties:
3. Resource
 pool

4. Fast
 adaptivity

1. “Self service”
 on demand5. Measurable service

2. High throughput
 network access

Operating Systems 18: Cloud, Unikernels, … 3

Hardware virtualization
• …enables the creation of multiple virtual machines on one

physical computer. Each virtual machine can have its own OS.
• Important foundation technology for Cloud computing and

server consolidation
• Technical basis: hypervisor / virtual machine monitor

Application
processes of
the host OS

Application processes
of the guest OS’s

Operating Systems 18: Cloud, Unikernels, … 4

Cloud service models
• SaaS – Software-as-a-Service

• Cloud service provider offers a
complete application

• e.g. Office365, Gmail, Zoom
• PaaS – Platform-as-a-Service

• Execution environment for
applications including the OS and
runtime environment (depending
on the programming language)

• e.g. Engine Yard, Google App
Engine

• IaaS – Infrastructure-as-a-Service
• (Virtual) hardware platform
• e.g. Amazon EC2, Microsoft Azure

4

Operating Systems 18: Cloud, Unikernels, … 5

Discussion: Cloud disadvantages
• Cloud-Computing has a number of advantages, but can also

cause problems that must not be ignored…
• Data protection and privacy

• Where are the data of my users/customers located?
Which data protection laws apply in the respective
country? (➛ GDPR)

• Is the cloud service provider trustworthy?
• Vendor lock-in

• Can I retrieve my data (for a reasonable amount of
money) if I want to change the provider?
If yes, in which format?

• Quality of service
• Which guarantees are offered by the provider?

5

Operating Systems 18: Cloud, Unikernels, … 6

Provisioning models
• Public Cloud

• Cloud Service Provider (CSP) has
arbitrary customers

• Private Cloud
• A cloud infrastructure for a (large)

company, which can use the company’s
own or rented resources.
➛ more control

• Community Cloud
• Multiple customers with the same

requirements share a cloud infrastructure
• Hybrid Cloud

• Mixed approach

6

Operating Systems 18: Cloud, Unikernels, … 7

Comparison of provisioning models
• Stallings: "Operating Systems: Internals and Design Principles"

7

Private
cloud

Community
cloud

Public
cloud

Hybrid
cloud

Scalability restricted restricted very high very high

Data protection
Security

most secure
option

very
secure

moderately
secure

very
secure

Performance very good very good low
to medium good

Reliability very high very high medium medium
to high

Costs high medium low medium

Operating Systems 18: Cloud, Unikernels, … 8

Application example / Requirements

8

• Secure access via
portal

• Function selection
(e.g. VM templates)

• Choice of a service
• Observation and

adaptation

• Provisioning of the
required resources

• Confirmation of a
service level
agreement (SLA)
and related costs

• Use (CSC) and
observation (CSP)

• Management (CSP)
(migration,
redundancy, energy
optimization,
extensibility, ...)

Operating Systems 18: Cloud, Unikernels, … 9

General architecture of a cloud OS
• All resources are virtualized → IaaS is basis of all services

9

Operating Systems 18: Cloud, Unikernels, … 10

Strategic decisions
• Where to place the VMs? When should they be migrated?
• How to minimize SLA violations? How much overbooking?
• Does it make sense to release and switch off single computers?
Different strategies are possible:

10

More resources
were sold than
are physically
available

We do not go into
details of the
strategies here

Source:
Ph.D. thesis of A. Kohne,
“SLA-basierte VM-Scheduling-
Verfahren für Cloud-Föderationen”

ViolationsMigra-
tions

Penalties Costs Profit Margin
(in %)

Evaluation of different VM configurations (initial distribution
according to RAM resources) for the BitBrains RnD trace
(month 1) with 500 VMs

Operating Systems 18: Cloud, Unikernels, … 11

Example: OpenStack
• Open source cloud OS: www.openstack.org

11

Operating Systems 18: Cloud, Unikernels, … 12

Relevance and use of virtualization
• Enforces strict adherence to a layer structure through control

and intervention possibilities for resource accesses by a VM
• Basis for...

• This construction principle can be replicated on different layers
and for different resources

12

X and Y are
types of
resources, e.g.
RAM, disks,
I/O devices

Source: [1]

Operating Systems 18: Cloud, Unikernels, … 13

Container base virtualization
or simply containers
• The OS kernel is

virtualized
• Containers share

a kernel
• Libraries and

system processes
can be different

• The virtualization
component takes care of...
• Separate views, e.g. each container sees only its "own"

processes
• Resource partitioning, e.g. CPU time
• Efficient sharing, e.g. avoid duplication of files

13

Operating Systems 18: Cloud, Unikernels, … 14

Example: Linux container support
• Integrated in the Linux kernel

• Container solutions only provide management tasks
• Separate views: Name spaces per task

• …for computer names (“UTS”), processes (“PID”), mount
points (“mount”), network devices and configuration
(“network”), IPC objects (“IPC”), control groups (“Cgroup”)
and system time (“Time”)

• Resource partitioning: Control groups (cgroups)
• Container shares of CPU time, memory and I/O bandwidth
• Configuration interface: pseudo file system cgroupfs

• Efficient sharing (of files): Overlay FS
• Overlay of directory trees

14

Operating Systems 18: Cloud, Unikernels, … 15

Hardware virtualization
• A complete computer (CPU, memory, I/O devices) is virtualized:

15

1 Type-1 hypervisors provide virtual
machines without the support of an
operating system (directly on the
hardware, "bare metal")

2 Type-2 hypervisors work on top of a
"host operating system".
They can use its capabilities, e.g. virtual
memory

 or

Operating Systems 18: Cloud, Unikernels, … 16

CPU virtualization (1)
• Most simple approach: CPU emulation (+ multiplexing)

• Interpretation or Just-in-time translation (JIT) of the
instructions of the emulated processor

• Examples: Bochs, QEMU, MAME
• Imitates an arbitrary CPU Y with the help of a CPU X
• Problem: slow execution speed

16

static int foo(int i) {
 return(i+1);
}
int main(void) {
 … <start timer>
 for(i=0; i<100000000; i++)
 t += foo(i);
 … <stop timer>
}

FAST/SLOW: with/without code optimization

Conclusion:
avoid CPU emulation where possible

Operating Systems 18: Cloud, Unikernels, … 17

CPU virtualization (2)
• Efficient approach: CPU multiplexing (CPU X1 , …, XN on X)
• Desired properties ("virtualization criteria")

• Equivalence: a VM behaves identical to the real machine
• Security: a VM is isolated. The hypervisor has full control
• Performance: virtual CPUs are not significantly slower than the

real one
• Question: which architectures are "virtualizable" in this way?
• Answer (Popek and Goldberg, 1974 [3]):

• CPUs have "sensitive" instructions which depend on the
privileged mode of the CPU (user/supervisor mode, memory
mapping, …) or switch its mode

• All sensitive instructions must generate a trap when executed in
user mode. This allows the hypervisor to emulate the instruction

• The "rest" works like a regular OS: VM scheduling

17

Operating Systems 18: Cloud, Unikernels, … 18

Memory virtualization (1)
• Problem: additional memory mapping layer

18

Guest operating systems assume that they have complete control over the
hardware. They use arbitrary page frames. Without the additional mapping
layer, conflicts with other guest OSes could occur!

Operating Systems 18: Cloud, Unikernels, … 19

Memory virtualization (2)
• Solution 1: Shadow page tables

• Require no special hardware virtualization support
• Idea:

1. Do not use the guest OS page tables
2. Hypervisor keeps a shadow page table

for each guest page table
3. Shadow table must be kept up to date!

• Version 1: intercept and interpret
all accesses to memory which
stores part of a page table

• Version 2: ignore changes, update
tables when a page fault occurs

• Both variants result in many traps to the hypervisor ➛ overhead

19

Shadow page tables are expensive. Lower costs are
possible using paravirtualization or hardware support

Operating Systems 18: Cloud, Unikernels, … 20

Memory virtualization (3)
• Solution 2: Nested page tables (AMD; Intel: "extended page tables"
• Idea:

• Hardware is responsible for the complete
memory mapping

• Guest OS can change "its" page table
as required

• Page table walk is more expensive
→ greater relevance of the TLB

• Page tables have
tree structure

• Pointers to tables are
physical guest addresses

• Translation to physical
host addresses required
(here: 4 translations!)

20

Operating Systems 18: Cloud, Unikernels, … 21

Memory virtualization (4)
More approaches...
• Ballooning: "Trick" for dynamic allocation of memory to VMs

• Small driver module communicates with the hypervisor
• Can reserve memory of the OS kernel on demand
• This memory can then be distributed to other VMs

• Deduplication: Detection and avoidance of duplicate page contents
between VMs. Saves main memory, e.g. between identical guest OSes

• VM migration
• Complete memory contents of a VM moved to other host system
• Optimization: Transfer of pages while the VM is running
• Recent changes are monitored using the dirty bit in the page table

• VM replication
• Memory state changes are periodically transmitted to a backup host.

Backup VM can replace one on a crashed/failed system quickly

21

Operating Systems 18: Cloud, Unikernels, … 22

I/O virtualization (1)
• Simple approach: I/O emulation (+ multiplexing)

• Accesses to I/O device registers are privileged operations or
can be intercepted by the hypervisor using the MMU ("trap
and emulate")

• Emulation of arbitrary I/O devices Y using I/O device X
• e.g. in Oracle VirtualBox: PS/2 mouse/keyboard; IDE,

SATA, SCSI, … hard disk; SVGA graphics card; different
AMD and Intel network controllers; USB host controller;
AC‘97, Intel HD or Soundblaster 16 sound cards

• Problem: I/O throughput
• Even simple I/O operations require hundreds or thousands

of I/O register accesses!

22

I/O emulation is expensive. Lower costs are (again)
possible using paravirtualization or hardware support

Operating Systems 18: Cloud, Unikernels, … 23

I/O virtualization (2)
• Alternative: do not use multiplexing – device passthrough

• A device is exclusively assigned to exactly one VM
• Arbitrary register accesses are permitted (without causing a trap)

• Problems:
• DMA addresses are physical host addresses not known to the VM
• This could be used to violate the VM isolation
• Interrupts could be triggered on the "wrong" CPU

• Solution: I/O MMU
• Hardware extension implemented in CPU or mainboard chip set
• DMA uses an address mapping using tables

• Acceleration using separate TLBs
• Interrupt remapping is able to change the interrupt number and

destination CPU

23

Operating Systems 18: Cloud, Unikernels, … 24

I/O virtualization (3)
• Alternative 2: PCIe single root I/O virtualization (SR-IOV)
• Hardware mechanism: One device appears as multiple virtual ones

• Multiple I/O register sets,
multiple interrupt configurations, …

• Hypervisor maps one of these devices
to a VM and does not have to
interfere further

• Possible problem:
• Hardware takes care of the

prioritization of VMs itself
• e.g. round robin

• Conflicts with priorities of the
hypervisor are possible

24

Operating Systems 18: Cloud, Unikernels, … 25

Conclusion
• Virtualization is an important architectural concept recurring in

the system software stack
• Transparent: Multiplexing, aggregation, emulation

• Hardware virtualization (according to Popek/Goldberg)
• Replaces inflexible connection of hardware and software

• enables e.g. migration and replication of VMs at runtime
• Technical basis for cloud computing

• Operating systems for clouds
• Well-known functionality:

Resource management and abstractions
• …implemented on a higher layer

25

Operating Systems 18: Cloud, Unikernels, … 26

References
[1] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. 2017. Hardware and Software
Support for Virtualization. Morgan & Claypool Publishers, 2017.
[2] Mihočka, Darek, Stanislav Shwartsman and Intel Corp. Virtualization Without
Direct Execution or Jitting: Designing a Portable Virtual Machine Infrastructure.”, 2008.
[3] Gerald J. Popek and Robert P. Goldberg. 1974. Formal requirements for
virtualizable third generation architectures. Commun. ACM 17, 7 (July 1974), 412–
421.DOI:https://doi.org/10.1145/361011.361073

