
Operating Systems
Lecture 16: Modern file systems

Michael Engel

Operating Systems 16: Modern file systems 2

What do we know about storage so far?
• Disk drives have a block structure and provide random access

• Locality of disk accesses is crucial to enable high
performance
• head movements are especially costly – multiple ms

• SSDs are also block structured but have no mechanical
delays

• File systems provide abstractions to enable programs to work
with persistent data
• Files and directory hierarchies
• Metadata, e.g. name, size, file creation data, …

• There are different ways to map file systems onto a disk

2

Operating Systems 16: Modern file systems 3

Challenge: Reliability (1)
• Problems:

• Defective disks or blocks
• System crashes or failures

• Impacts:
• Complete loss of data
• Defective data blocks, e.g.

• application can no longer read a file
• Inconsistent metadata, e.g.

• directory entry for a file is
missing or vice versa

• block is used but marked
as free

3

The "bath tub curve" shows
the typical development of
the error rate of hard disks
(and most other technical
products) over their lifetime

Operating Systems 16: Modern file systems 4

Challenge: Reliability (2)
• Solution: Backup

• Frequent incremental and complete backup of data to a
different storage medium

• Problems: time and storage space overhead
• Solution: Checksums

• Files can be annotated with a checkum (error detection) or
an error-correcting code (repair)

• Problems: storage space overhead; responsibility (layer)
• Solution: Repair tools

• Programs such as chkdsk, scandisk or fsck are able to
repair (some) inconsistent metadata

• Problems: Possible loss of data in the repair process;
long runtimes of the repair programs for large disks

4

Operating Systems 16: Modern file systems 5

Challenge: Performance optimzation
Problem:
• Hard disks have low read/write speeds

and a high positioning latency
• CPU/main memory performance

and disk performance diverge
• Impact:
• The hard disk becomes the bottleneck for I/O intensive

applications (e.g. databases) and tasks (e.g. booting the system
or starting a program)

Solution: Cache
• Keep important (meta)data in main memory
• Problem: Consistency between cache and disk

Example: Toshiba X300
Capacity: 4-16 TB
Ø Latency: 4,17 ms
MTTF: 600.000 h
Benchmarks (6 TB):
Seq. access 130 MB/s
Rand. access 2.25 MB/s

Operating Systems 16: Modern file systems 6

Challenge: Disk management
Problem:
• Physical dimensions of disk drives limit

the size of the file system(s)
• What can be done if a disk is full?

Impact:
• Disk capacity is over dimensioned to avoid

the overhead of copying to a different disk

Solution: Virtual file system
• Mount new disks as directories (using "soft links")

• Problems: not transparent for users and applications; size
limitation still in place for existing directories

1:1 relation between
file system and disk

open("/www/index.html",

ext4 xfs

Operating Systems 16: Modern file systems 7

Intelligent block device (drivers)
• Idea: Handle reliability problems below the file system layer
• Advantage: all file system implementations can benefit

Block device driver

physical
drives

logical
drives

Buffering, redundancy, checksums, …

ext4 xfs

Operating Systems 16: Modern file systems 8

UNIX Block Buffer Cache
• Buffer for disk blocks in main memory

• Uses algorithms similar to page frame handling
• Read ahead: for sequential reads, the transfer of subsequent

data blocks is initiated
• Lazy write: a block is not written to disk directly

• allows optimization of write accesses and does not block
the writer

• Free block management in a free list
• Possible entries for the free list are determined using LRU
• Blocks which are already marked free but are not yet

reused can be reactivated (reclaim)

Operating Systems 16: Modern file systems 9

UNIX Block Buffer Cache (2)
• Write to disk if/when

• no more free buffers are available
• periodically by the system (fsflush process, update process),
• when calling the sync(2) system call
• and after each write system call when the corresponding file

was opened with the option O_SYNC
• Adressing

• Blocks are addressed using a tuple:
• (device number, block number)

• A hash of the address is used to select one of the possible
buffer lists

Operating Systems 16: Modern file systems 10

UNIX Block Buffer Cache: Structure
H

as
h

va
lu

e

Buffer lists
(queues) Every list is

linked
forward and

backward

This enables
easy addition
and removal

of entries

buffered block

Operating Systems 16: Modern file systems 11

UNIX Block Buffer Cache: Structure (2)
H

as
h

va
lu

e

Buffer lists
(queues) Every list is

linked
forward and

backward

This enables
easy addition
and removal

of entries

Fr
ee

 li
st

Operating Systems 16: Modern file systems 12

[Linux] Logical Volume Management
• 1:1 relation between file system and disk is no longer enforced

LVM

physical
volumes

> pvcreate /dev/sda1 /dev/sdc2
> vgcreate vg2 /dev/sda1 /dev/sdc2
> lvcreate -L10G -name home vg2

ext4

volume
groups

logical
volumes

ext4 xfs

/dev/vg1/srv /dev/vg1/var /dev/vg2/home

vg1 vg2

/dev/hda2 /dev/sda1 /dev/sdc2

Logical volumes can
be arbitrarily extended,
shrunk and moved
(if the file system
allows this)

Operating Systems 16: Modern file systems 13

Redundant Arrays of Inexpensive Disks
(short: RAID)
• Initial idea: save costs by creating large logical disks out of

inexpensive smaller disks (cost per GB)
• Additional features:

• better utilization of the available data bandwidth by using
parallel transfers

• fault tolerance using redundancy

• Two variants:
• Hardware RAID: disk controller with special management

software (+potentially cache)
• Software RAID: layer between disk driver and file system

code

Operating Systems 16: Modern file systems 14

RAID 0: Disk striping
• Idea: Data of a large logical disk are stored in a round robin way

distributed over N physical disks:

• Effect: increased bandwidth, since multiple disks are accessed
in parallel

• Disadvantage: failure probability is multiplied by N

Operating Systems 16: Modern file systems 15

RAID 1: Disk mirroring
• Idea: data is stored redundantly on two disks at the same time:

• Effect: increased read bandwidth, somewhat lower write
bandwidth, higher reliability by having a copy of the data

• Disadvantage: uses twice the disk space

Operating Systems 16: Modern file systems 16

RAID 4: Additional parity disk
• Idea: data is striped over multiple disks, one disk stores the

related parity

• Effect: errors (of a single disk) can be detected and fixed without
a large storage overhead. Fast read operations

• Disadvantage: parity disk is bottleneck when writing

Parity block contains
bitwise XOR of the
related blocks of the
other stripes

Operating Systems 16: Modern file systems 17

RAID 5 and 6: Distributed parity data
• Idea: distribute the parity block over all disks

• Effect: additional write overhead to update the parity block when
writing is distributed

• With RAID 6, an additional parity block can be used to restore
the data of two failed disks

• Disadvantage: all data is protected with high overhead, even
though a part of the data may be not critical

RAID 5 is the most
commonly used
RAID variant today

Operating Systems 16: Modern file systems 18

RAID x+y (= RAID xy): Hierarchies
• Idea: Combine different RAID mechanisms in a hierarchy,

e.g. RAID 1+0 (= RAID 10):

• Effect: properties can be combined.
Common setups: RAID 10, 50 or 60

• Disadvantage: requires a large number of disks

Operating Systems 16: Modern file systems 19

Journaled File Systems
• In addition to writing data and metadata (e.g. inodes), journaled

file systems write a protocol of the changes
• All changes are part of a transaction
• Examples for transactions:

• create, delete, expand, shorten files
• change file attributes
• rename a file

• All changes to the file system are additionally stored in a
protocol file (log file)

• At boot time, the protocol file is compared to the latest
changes, this avoids inconsistencies

Operating Systems 16: Modern file systems 20

Journaled File Systems: Protocol
• A protocol entry is generated for each single operation of a

transaction and…
• after this, the change to a file system is carried out

• Important conditions:
• A protocol entry is always written to disk before the change

itself
• If something was changed on a disk, the related protocol

entry is also found on that disk

Operating Systems 16: Modern file systems 21

Journaled File Systems: Recovery
• When booting a system, the operating system checks, if the

changes logged in the protocol are present on disk:

• A transaction can be repeated or committed if all protocol
entries are available on disk → redo

• Started transactions that have not been completed are
revoked → undo

Operating Systems 16: Modern file systems 22

Journaled File Systems: Results
• Advantages:

• a transaction is either committed (completed) in whole or not
at all

• users can define transactions that span multiple file accesses,
if these are also recorded in the log

• impossible to create inconsistent metadata
• booting a crashed system only requires a fast log file check

• the alternative chkdsk takes a long time for large disks

• Disadvantages:
• less efficient, since additional log file has to be written
• thus usually only metadata journaling, no full journaling
• examples: Windows NTFS, Linux ext 3/4, IBM JFS

Operating Systems 16: Modern file systems 23

Log-structured file systems [1]
(short: LFS)
• Observation:

• Large caches reduce the frequency of read operations
• Write operations should not be scattered

• (Radical) approach: one log is sufficient for everything!
• Blocks are not overwritten, but only appended to the log
• Changes to metadata are also stored in the log only
• Write operations are collected in main memory and then

written to disk as a single large segment (e.g. 1 MB)
• Only the superblock has a fixed position on the disk

Operating Systems 16: Modern file systems 24

Log-structured file systems (2)
• Example:

• Log works like a ring buffer:
changes are added to the front, obsolete data fall out at the end

• Cleaner: process to compactify/release segments
• Effect:

• Consistency: new segments are entirely visible or not at all
• The disk bandwidth is also utilized to a high degree when writing
• Performance reduced significantly if free memory is low

Operating Systems 16: Modern file systems 25

CoW: Copy-on-Write file systems
• Many modern file systems refrain from overwriting

• Idea from LFS, but more flexible when allocation free areas
• Example: manipulate file (B+ tree)… [2]

• Example: "copy" complete directory tree
Only when P or Q are
changed, a copy is
performed –
basis for the efficient
creation of snapshots

Operating Systems 16: Modern file systems 26

BTRFS: “butter” FS [2]
… according to developer Chris Mason ("comes from a CoW")
• Widely used on Linux, inspired by Sun ZFS
• Features: …very many…

• Fast writes:
Special "CoW friendly" B+ trees

• Resource-saving snapshots
• No loss of data

• Atomic changes and checksums for all metadata and data
• Use of multiple disks

• Implements flexible RAID:
differentiates between data and metadata

• Size changes while the system is running
• Data compression

Operating Systems 16: Modern file systems 27

Conclusion
• Modern file systems…

• consider the properties of current hardware:
large main memories (cache), fast parallel CPU cores, …

• have many new features:
snapshots, volume management, redundancy, …

• Basic design decision: Should this functionality be implemented
in the file system (or rather at a lower layer)?

• Pro:
• more flexibility
• possible to make use of knowledge about the file system

structure, e.g. different RAID levels for data and metadata
• Con:

• All file systems would benefit from functionality implemented
on the driver level

Operating Systems 16: Modern file systems 28

References
[1] Mendel Rosenblum and John K. Ousterhout. 1992. The design and
implementation of a log-structured file system. ACM Trans. Comput. Syst.
10, 1 (Feb. 1992), 26–52.DOI: https://doi.org/10.1145/146941.146943
[2] Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The
Linux B-Tree Filesystem. ACM Trans. Storage 9, 3, Article 9 (August
2013), 32 pages.DOI: https://doi.org/10.1145/2501620.2501623

