
Operating Systems
Lecture 13: Real-time scheduling

Michael Engel

Operating Systems 13: Real-time scheduling 2

Real-time computer systems
• What’s this all about?

„A real-time computer system is a computer
system in which the correctness of the system
behavior depends not only on the logical results
of the computations, but also on the physical
instant at which these results are produced.“

Hermann Kopetz [1]

Operating Systems 13: Real-time scheduling 3

Example: "inverted pendulum"

The reaction time of the computer system (time passing between
stimulus and reaction) and its variation ("jitter") should be minimized

Objective: angle 𝛼 should be = 0°

Real-time
computer
system

stimuli

timely
reaction

motor
(actor)

👈 disturbance

protractor
= angle

measurement
(sensor)

controlled object

Operating Systems 13: Real-time scheduling 4

Deadlines
• Often defined by the technical system to be controlled

• Deadline classification:
• soft: the obtained result (the reaction of the system) is

useful even if it was obtained after the deadline has passed
• firm: the result is useless after the deadline has passed
• hard: if the deadline passes without a system reaction,

damage can occur
• A real-time system is considered "hard" if at least one of its

deadlines is hard. Otherwise, the system is "soft"
• For hard real-time systems, it has to be guaranteed that all

deadlines are kept. This requires different development
approaches and system structures.

Operating Systems 13: Real-time scheduling 5

How long does a program run?
• Runtimes of programs vary due to:

• different inputs
• hardware states when the program starts
• interrupts, process switching, power management, …

• Especially relevant: Worst Case Execution Time (WCET)

The estimated WCETEST
has to be guaranteed
larger or equal to the real
WCET.

However, the difference
between the two should be
as small as possible ("tight
bounds")

--
--

20
20

-0
8-

17
--

--
238 5 Evaluation and Validation

compilers exist. This method can be more precise than the previous one, but may
be significantly (and sometimes prohibitively) more time consuming.

In order to obtain su�ciently precise information, communication needs to be con-
sidered as well. Unfortunately, it is typically di�cult to compute communication
cost already during early design phases.

Formal performance evaluation techniques have been proposed by many re-
searchers. For embedded systems, the work of Thiele et al., Henia and Ernst et
al., and Wilhelm et al. is particularly relevant (see, for example, [537, 212] and
[587]). These techniques require some knowledge of architectures. They are less
appropriate for early design phases, but some of them can be used without knowing
all details about target architectures. These approaches model real, physical time.

5.2.2 WCET Estimation

Scheduling of tasks requires knowledge about the duration of task executions, espe-
cially if meeting time constraints has to be guaranteed, as in real-time (RT) systems.
The worst case execution time (WCET) is the basis for most scheduling algorithms.
Some definitions related to the WCET are shown in Fig. 5.4.

Fig. 5.4 WCET-related terms

ESTEST

WCETBCET

WCETBCET

execution times

t

Distribution of

Definition 5.9: The worst case execution time (WCET) is the largest execution time
of a program for any input and any initial execution state.

Unfortunately, the WCET is extremely di�cult to compute. In general, it is un-
decidable whether or not the WCET is finite. This is obvious from the fact that it
is undecidable whether or not a program terminates. Hence, the WCET can only
be computed for certain programs/tasks. For example, for programs without recur-
sion, without while loops and with loops having statically known iteration counts,
decidability is not an issue. But even with such restrictions, it is usually practically
impossible to compute the WCET exactly. The e�ect of modern processor architec-
tures’ pipelines with their di�erent kinds of hazards and memory hierarchies with
limited predictability of hit rates is di�cult to precisely predict at design time. Com-
puting the WCET for systems containing interrupts, virtual memory, and multiple
processors is an even greater challenge. As a result, we must be happy if we are able
to compute good upper bounds on the WCET.

Operating Systems 13: Real-time scheduling 6

Trigger
… to initiate computation ("task") can be realized in different ways:

• Event-triggered real-time systems
• A relevant change of the state of the controlled object (an

event) was observed via sensor readings
• Scheduling of the tasks at runtime
• High overhead for tests under high load
• Behavior is difficult to predict → soft real-time systems

Operating Systems 13: Real-time scheduling 7

Trigger
… to initiate computation ("task") can be realized in different ways:

• Time-triggered real-time systems
• Fixed points in time to execute calculations are planned in

advance (offline scheduling). Their execution is periodic
• Resource utilization is higher than with event-triggered

systems, since the calculation always has to consider the
worst case execution time (WCET)

• High energy consumption since the system is permanently
active

• Lower test effort required
• Guarantees are possible → hard real-time systems

Operating Systems 13: Real-time scheduling 8

Example: OSEKtime
Objectives of the OSEKtime OS [2]:
• Safe realization of "x-by-wire" applications, e.g. fly-by-wire,

steer-by-wire, brake-by-wire, eGas
• Guaranteed predictable behavior

• support for time-triggered applications
→OSEKtime operating system specification

(version 1.0: 2001)
• Global coordination of embedded control units (ECUs):

• global time!
→ FTCom specification

• Compatibility with "classical" OSEK-OS tasks
• Support for event-driven applications

Operating Systems 13: Real-time scheduling 9

OSEKtime scheduler
• Offline scheduling :

• A dispatch table controls the periodic activation of tasks:

• The dispatcher is invoked by a timer interrupt
• Only the dispatcher can activate tasks
• Safety mechanism: deadline monitoring

Dispatch table the for example.
A complete pass through the
table is called dispatcher round

Task Starting time
T1 1000 µs
T2 3000 µs
T3 4000 µs
T4 5000 µs

time (in µs)0 10000 150005000

T1 T1T2 T3 T2 T3T1 T1

period 1 period 2 period 3

Operating Systems 13: Real-time scheduling 10

Offline scheduling
• Tools support developers when scheduling tasks at design time

TimeCore

Operating Systems 13: Real-time scheduling 11

Real-time scheduling
• Objective:

obtain guarantees that hard deadlines are kept
• Taxonomy of scheduling approaches [3, chapter 6]:

Operating Systems 13: Real-time scheduling 12

Rate-monotonic scheduling (RM)

• Rate-monotonic (RM) scheduling is a scheduling strategy for
preemptive, periodic tasks with hard deadlines

• The scheduler works at runtime (using fixed priorities)

Operating Systems 13: Real-time scheduling 13

RM assumptions (Liu & Layland 1973 [4])
A1. All tasks are preemptible at any time
 Preemption costs (duration) are negligible

A2. Only compute time is a relevant resource
 The overhead for memory, I/O accesses and other resources
 is negligible

A3. All tasks are independent
 There is no required order of execution between tasks

A4. All tasks are periodic

A5. The relative deadline of a task is equal to its period

Operating Systems 13: Real-time scheduling 14

Example: car headlight controller
…everything is periodic!
• For each task 𝜏i=(Ci,Ti) we know its WCET Ci and period Ti,

but not its phase 𝜙i

Indicators:

• 𝜏5 = (1,500)

Status
messages:

• 𝜏1 = (2,20)

Control
messages:

• 𝜏2 = (2,10)

Stepper motor
control:

• 𝜏4 = (1,5)

Network
management:

• 𝜏3 = (4,50)

CAN bus

⏰

⏰

✉ ✉

Operating Systems 13: Real-time scheduling 15

RM algorithm
• The priority grows monotonously with the event rate (=frequency)
• Thus: short period → high priority
• Tasks with high priority preempt tasks

with low priority
• Example:

Gantt diagram for 𝜙i = 0

A practical implementation of
RM scheduling requires only
an operating system with a
preemptive fixed priority
scheduler

Period Deadline according to period Ti time in ms

5 ms

10 ms

20 ms

50 ms

500 ms

Control

Indicator

Operating Systems 13: Real-time scheduling 16

Schedulability analysis
• Question: are the deadlines kept for all tasks?

• The schedule can only be calculated if all tasks are completely
time-triggered. In our example, the phases can have arbitrary
values

• Necessary condition: the utilization U of the system is less than
or equal to 1:

• Example: 𝜏1 = (1,5), 𝜏2 = (2,20), 𝜏3 = (2,10), 𝜏4 = (4,50), 𝜏5 = (1,500)

U: system load
m: number of tasks

Assumption: Uniprocessor

But… is this
sufficient?

Operating Systems 13: Real-time scheduling 17

The “70% rule” [4]
• Rule: no deadline violations if the following condition holds:

• For large values of m, this converges against
ln(2) ≈ 0,6931, i.e. ca. 70%

• Advantage: simple test, low overhead
• Example 1: U = 58.2%, m = 5

• m·(21/m-1) = 74.35%, condition fulfilled → no deadline violation
• Example 2: 𝜏1 = (2,5) instead of 𝜏1 = (1,5), thus U = 78.2%, m = 5

• m·(21/m-1) = 74.35%, condition not fulfilled
→ possible deadline violation

• Disadvantage: no conclusion if the condition is not fulfilled

Tip: apply
L'Hôpital's rule

✔

U: system load
m: number of tasks

Operating Systems 13: Real-time scheduling 18

Sufficient and necessary conditions
• Sufficient condition positive
• e.g.
• Schedule is valid

• Necessary condition negative
• e.g. does not hold
• Schedule is invalid

Ideal case is an "exact test": sufficient and necessary condition

Increasing
complexity of
the task setnecessarysufficient

?

Better schedulability tests required

valid schedule invalid schedule

✔ ✗⊕ ⊖

Operating Systems 13: Real-time scheduling 19

Exact test: response time analysis [5]
• If the response time Ri for all tasks is less

than or equal to the period Ti, all deadlines
are kept

• For the largest possible delay 𝜙i = 0:
All higher prioritized tasks are ready at the
start of the period

Condition (necc. and suff.):

• Calculate Ri: Ix: "Interference" – delay caused by
 tasks with higher priority
hpx: indexes of the tasks that have a
 higher priority than task x
⌈x⌉: rounding up to next integer

Operating Systems 13: Real-time scheduling 20

Exact test: iterative solution
• Calculate Ri using fixed point iteration:

• Terminate if Rin+1 = Rin or Rin+1 > Ti  

 

• Pseudo code of the tests for all tasks:
for (each task 𝜏i) {
 I = 0
 do {
 R = I + Ci
 if (R > Ti) return false // deadline violation
 I =

 } while (I + Ci > R)
}
return true // all deadlines are kept

Operating Systems 13: Real-time scheduling 21

Rate-monotonic scheduling is "optimal"
• We need to show:

• Proof by contradiction: we assume…
algorithm A finds a valid schedule, but RM does not
• In schedule A: prio(𝜏i) = prio(𝜏j) + 1 and Ti > Tj (different to RM)

Ci+Cj ≤ Tj holds since the schedule is valid
and 𝜏i has a higher priority

RM is an optimal scheduling algorithm for fixed
priorities. I.e., if any algorithmus can find a
valid schedule, RM can also find one.

Operating Systems 13: Real-time scheduling 22

Rate-monotonic scheduling is "optimal"
• We need to show:

• Proof by contradiction: we assume…
algorithm A finds a valid schedule, but RM does not
• In schedule A: prio(𝜏i) = prio(𝜏j) + 1 and Ti > Tj (different to RM)

Ci+Cj ≤ Tj holds since the schedule is valid and 𝜏i has a higher priority

What is the effect of swapping the priorities (only) of these two tasks?
𝜏j can be scheduled, since it now has higher priority  
𝜏i can also be scheduled since Ci+Cj ≤ Tj < Ti

RM is an optimal scheduling algorithm for fixed
priorities. I.e., if any algorithmus can find a
valid schedule, RM can also find one.

Operating Systems 13: Real-time scheduling 23

Rate-monotonic scheduling is "optimal"
• We need to show:

• Proof by contradiction: we assume…
algorithm A finds a valid schedule, but RM does not
• In schedule A: prio(𝜏i) = prio(𝜏j) + 1 and Ti > Tj (different to RM)

Ci+Cj ≤ Tj holds since the schedule is valid and 𝜏i has a higher priority

What is the effect of swapping the priorities (only) of these two tasks?
𝜏j can be scheduled, since it now has higher priority  
𝜏i can also be scheduled since Ci+Cj ≤ Tj < Ti

We obtain an RM schedule by applying a finite number of these swaps 
This is also a valid schedule → contradiction → RM is optimal!

RM is an optimal scheduling algorithm for fixed
priorities. I.e., if any algorithmus can find a
valid schedule, RM can also find one.

Operating Systems 13: Real-time scheduling 24

RM scheduling: conclusion

• RM is easy to apply and optimal for fixed priorities
• the OS only needs to provide a "fixed priority" scheduler

• Response time analysis enables an exact schedulability test
• Important for hard real-time systems: mathematical guarantee!

• In many cases, the 70% rule is sufficient

• Attention:
• Assumptions A.1-5 must hold!

• uniprocessor, no task dependencies, …
• WCET estimation difficult for modern processors

• memory hierarchies, out-of-order execution,
DRAM access times, ...

• In any case, the complete system has to be analyzed

Operating Systems 13: Real-time scheduling 25

Example: Earliest Deadline First

• Earliest Deadline First (EDF) scheduling is a scheduling
strategy for preemptive, periodic and aperiodic tasks with hard
deadlines. The priorities are assigned dynamically (at runtime).

Operating Systems 13: Real-time scheduling 26

EDF algorithm
• Tasks which are ready are sorted in

order of their absolute deadlines
• If the first task in the list has an earlier deadline than the currently

running task, the running task is preempted immediately!

In general, deadlines
are specified as
relative times

Example:

Operating Systems 13: Real-time scheduling 27

Optimality of EDF
• EDF minimizes the maximum delay of tasks

• If a schedule exists which is able to keep all deadlines, then
EDF also keeps all deadlines → EDF is optimal
• …for independent tasks with dynamic priorities

• Especially for periodic tasks the following holds:
If U ≤ 1, then EDF always finds a valid schedule
(without missing deadlines!)

Task 1

Task 2

Task 3

delay 1

delay 2

no delay

Proof in [6]

Operating Systems 13: Real-time scheduling 28

EDF-Scheduling: Conclusion
• Simply optimal for periodic as well as aperiodic task sets

• Achieves a higher utilization than RM scheduling by using
dynamic priorities

• Attention:
• EDF is usually only implemented in special real-time

operating systems
• No information about the number and duration of deadline

misses can be obtained
• Less predictable than e.g. RM
• Response times can vary significantly: "jitter"
• In overload situations: "domino effect"

Operating Systems 13: Real-time scheduling 29

Outlook: Extending the strategies
• Working with sporadic tasks

• Limited arrival rate, but no strict period
• Consideration of task dependencies
• Increase CPU utilization

• mixed-criticality systems
• restriction to "harmonic tasks"

• periods are integer multiples of each other
• Modus changes

• e.g. indicator/stepper motor becomes active
• Handle [temporary] overload
• Adaptation to [heterogeneous] multiprocessor systems

Operating Systems 13: Real-time scheduling 30

References
[1] Kopetz, Hermann: Real-Time Systems: Design Principles for Distributed
Embedded Applications (2nd. ed.). Springer Publishing Company, Inc., 2011.
https://doi.org/10.1093/comjnl/29.5.390
[2] Automotive Open System Architecture – http://www.autosar.org
[3] Peter Marwedel. 2021. Embedded System Design: Embedded Systems
Foundations of Cyber-Physical Systems (4th ed.). Springer Publishing
Company, Incorporated. Open access: https://www.springer.com/gp/book/
9783030609092
[4] C. L. Liu and J. W. Layland. 1973. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. J. ACM20, 1 (January
1973), 46-61. DOI=http://dx.doi.org/10.1145/321738.321743
[5] M. Joseph and P. Pandya. 1986. Finding response times inreal-time
systems, BCS Computer Journal, 29 (5): 390–395,
DOI=https://doi.org/10.1093/comjnl/29.5.390
[6] G. C. Buttazzo. Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic Publishers, USA,
1997

https://www.springer.com/gp/book/9783030609092
https://www.springer.com/gp/book/9783030609092

