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Real-time computer systems
• What’s this all about?

„A real-time computer system  is a computer 
system in which  the correctness  of the system 
behavior depends not only on  the logical results 
of the computations, but also on the physical 
instant  at which these results are produced.“

Hermann Kopetz [1]
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Example: "inverted pendulum"

The reaction time of the computer system (time passing between  
stimulus and reaction) and its variation ("jitter") should be minimized

Objective: angle 𝛼 should be = 0°
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Deadlines
• Often defined by the technical system to be controlled 

• Deadline classification: 
• soft: the obtained result (the reaction of the system) is 

useful even if it was obtained after the deadline has passed 
• firm: the result is useless after the deadline has passed 
• hard: if the deadline passes without a system reaction, 

damage can occur 
• A real-time system is considered "hard" if at least one of its 

deadlines is hard. Otherwise, the system is "soft" 
• For hard real-time systems, it has to be guaranteed that all 

deadlines are kept. This requires different development 
approaches and system structures.
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How long does a program run?
• Runtimes of programs vary due to:  

• different inputs 
• hardware states when the program starts 
• interrupts, process switching, power management, …

• Especially relevant: Worst Case Execution Time (WCET)

The estimated WCETEST 
has to be guaranteed 
larger or equal to the real 
WCET. 

However, the difference 
between the two should be 
as small as possible ("tight 
bounds")
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compilers exist. This method can be more precise than the previous one, but may
be significantly (and sometimes prohibitively) more time consuming.

In order to obtain su�ciently precise information, communication needs to be con-
sidered as well. Unfortunately, it is typically di�cult to compute communication
cost already during early design phases.

Formal performance evaluation techniques have been proposed by many re-
searchers. For embedded systems, the work of Thiele et al., Henia and Ernst et
al., and Wilhelm et al. is particularly relevant (see, for example, [537, 212] and
[587]). These techniques require some knowledge of architectures. They are less
appropriate for early design phases, but some of them can be used without knowing
all details about target architectures. These approaches model real, physical time.

5.2.2 WCET Estimation

Scheduling of tasks requires knowledge about the duration of task executions, espe-
cially if meeting time constraints has to be guaranteed, as in real-time (RT) systems.
The worst case execution time (WCET) is the basis for most scheduling algorithms.
Some definitions related to the WCET are shown in Fig. 5.4.

Fig. 5.4 WCET-related terms
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Definition 5.9: The worst case execution time (WCET) is the largest execution time
of a program for any input and any initial execution state.

Unfortunately, the WCET is extremely di�cult to compute. In general, it is un-
decidable whether or not the WCET is finite. This is obvious from the fact that it
is undecidable whether or not a program terminates. Hence, the WCET can only
be computed for certain programs/tasks. For example, for programs without recur-
sion, without while loops and with loops having statically known iteration counts,
decidability is not an issue. But even with such restrictions, it is usually practically
impossible to compute the WCET exactly. The e�ect of modern processor architec-
tures’ pipelines with their di�erent kinds of hazards and memory hierarchies with
limited predictability of hit rates is di�cult to precisely predict at design time. Com-
puting the WCET for systems containing interrupts, virtual memory, and multiple
processors is an even greater challenge. As a result, we must be happy if we are able
to compute good upper bounds on the WCET.
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Trigger
… to initiate computation ("task") can be realized in different ways: 

• Event-triggered real-time systems 
• A relevant change of the state of the controlled object (an 

event) was observed via sensor readings 
• Scheduling of the tasks at runtime 
• High overhead for tests under high load 
• Behavior is difficult to predict → soft real-time systems



Operating Systems 13: Real-time scheduling 7

Trigger
… to initiate computation ("task") can be realized in different ways: 

• Time-triggered real-time systems 
• Fixed points in time to execute calculations are planned in 

advance (offline scheduling). Their execution is periodic 
• Resource utilization is higher than with event-triggered 

systems, since the calculation always has to consider the 
worst case execution time (WCET) 

• High energy consumption since the system is permanently 
active 

• Lower test effort required 
• Guarantees are possible → hard real-time systems
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Example: OSEKtime
Objectives of the OSEKtime OS [2]: 
• Safe realization of "x-by-wire" applications, e.g. fly-by-wire, 

steer-by-wire, brake-by-wire, eGas 
• Guaranteed predictable behavior 

• support for time-triggered applications 
→OSEKtime operating system specification  

(version 1.0: 2001) 
• Global coordination of embedded control units (ECUs): 

• global time! 
→ FTCom specification 

• Compatibility with "classical" OSEK-OS tasks 
• Support for event-driven applications
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OSEKtime scheduler
• Offline scheduling :  

• A dispatch table controls the periodic activation of tasks:

• The dispatcher is invoked by a timer interrupt 
• Only the dispatcher can activate tasks 
• Safety mechanism: deadline monitoring

Dispatch table the for example. 
A complete pass through the 
table is called dispatcher round

Task          Starting time 
T1              1000 µs 
T2              3000 µs 
T3              4000 µs 
T4              5000 µs

time (in µs)0 10000 150005000

T1 T1T2 T3 T2 T3T1 T1

period 1 period 2 period 3
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Offline scheduling
• Tools support developers when scheduling tasks at design time

TimeCore
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Real-time scheduling
• Objective: 

obtain guarantees that hard deadlines are kept 
• Taxonomy of scheduling approaches [3, chapter 6]:
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Rate-monotonic scheduling (RM)

• Rate-monotonic (RM) scheduling is a scheduling strategy for 
preemptive, periodic tasks with hard deadlines 

• The scheduler works at runtime (using fixed priorities)
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RM assumptions (Liu & Layland 1973 [4])
A1. All tasks are preemptible at any time 
      Preemption costs (duration) are negligible 
 
A2. Only compute time is a relevant resource 
      The overhead for memory, I/O accesses and other resources 
       is negligible 

A3. All tasks are independent 
 There is no required order of execution between tasks 

A4. All tasks are periodic 

A5. The relative deadline of a task is equal to its period
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Example: car headlight controller
…everything is periodic! 
• For each task 𝜏i=(Ci,Ti) we know its WCET Ci and period Ti,  

but not its phase 𝜙i

Indicators: 

• 𝜏5 = (1,500)

Status 
messages: 

• 𝜏1 = (2,20)

Control 
messages: 

• 𝜏2 = (2,10)

Stepper motor 
control: 

• 𝜏4 = (1,5)

Network 
management: 

• 𝜏3 = (4,50)

CAN bus

⏰

⏰

✉ ✉
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RM algorithm
• The priority grows monotonously with the event rate (=frequency) 
• Thus: short period → high priority 
• Tasks with high priority preempt tasks  

with low priority 
• Example:                     

Gantt diagram for 𝜙i = 0

A practical implementation of 
RM scheduling requires only 
an operating system with a 
preemptive fixed priority 
scheduler

Period Deadline according to period Ti time in ms

5 ms

10 ms

20 ms

50 ms

500 ms

Control

Indicator
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Schedulability analysis
• Question: are the deadlines kept for all tasks? 

• The schedule can only be calculated if all tasks are completely 
time-triggered. In our example, the phases can have arbitrary 
values 

• Necessary condition: the utilization U of the system is less than 
or equal to 1: 
 
 
 

• Example: 𝜏1 = (1,5), 𝜏2 = (2,20), 𝜏3 = (2,10), 𝜏4 = (4,50), 𝜏5 = (1,500)

U: system load 
m: number of tasks

Assumption: Uniprocessor

But… is this 
sufficient?
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The “70% rule” [4]
• Rule: no deadline violations if the following condition holds: 

 
 

• For large values of m, this converges against  
ln(2) ≈ 0,6931, i.e. ca. 70% 

• Advantage: simple test, low overhead 
• Example 1:  U = 58.2%, m = 5  

• m·(21/m-1) = 74.35%, condition fulfilled → no deadline violation 
• Example 2: 𝜏1 = (2,5) instead of 𝜏1 = (1,5), thus U = 78.2%, m = 5 

• m·(21/m-1) = 74.35%, condition not fulfilled  
→ possible deadline violation 

• Disadvantage: no conclusion if the condition is not fulfilled

Tip: apply 
L'Hôpital's rule

✔

U: system load 
m: number of tasks
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Sufficient and necessary conditions
• Sufficient condition positive 
• e.g.  
• Schedule is valid

• Necessary condition negative 
• e.g.               does not hold 
• Schedule is invalid

Ideal case is an "exact test": sufficient and necessary condition

Increasing 
complexity of 
the task setnecessarysufficient

?

Better schedulability tests required

valid schedule invalid schedule

✔ ✗⊕ ⊖
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Exact test: response time analysis [5]
• If the response time Ri  for all tasks is less 

than or equal to the period Ti, all deadlines 
are kept 

• For the largest possible delay 𝜙i = 0:  
All higher prioritized tasks are ready at the 
start of the period

Condition (necc. and suff.):

• Calculate Ri: Ix: "Interference" – delay caused by  
 tasks with higher priority 
hpx: indexes of the tasks that have a 
 higher priority than task x 
⌈x⌉: rounding up to next integer
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Exact test: iterative solution
• Calculate Ri using fixed point iteration:

• Terminate if Rin+1 = Rin or Rin+1 > Ti  

 

• Pseudo code of the tests for all tasks:
for (each task 𝜏i) { 
 I = 0 
 do { 
  R = I + Ci 
  if (R > Ti) return false // deadline violation  
  I =  

 } while (I + Ci > R) 
} 
return true // all deadlines are kept
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Rate-monotonic scheduling is "optimal"
• We need to show: 

 

• Proof by contradiction: we assume… 
algorithm A finds a valid schedule, but RM does not 
• In schedule A: prio(𝜏i) = prio(𝜏j) + 1 and Ti > Tj  (different to RM)

Ci+Cj ≤ Tj holds since the schedule is valid  
and 𝜏i has a higher priority

RM is an optimal scheduling algorithm for fixed 
priorities. I.e., if any algorithmus can find a 
valid schedule, RM can also find one.
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Rate-monotonic scheduling is "optimal"
• We need to show: 

 

• Proof by contradiction: we assume… 
algorithm A finds a valid schedule, but RM does not 
• In schedule A: prio(𝜏i) = prio(𝜏j) + 1 and Ti > Tj  (different to RM)

Ci+Cj ≤ Tj holds since the schedule is valid and 𝜏i has a higher priority 

What is the effect of swapping the priorities (only) of these two tasks?
𝜏j can be scheduled, since it now has higher priority  
𝜏i can also be scheduled since Ci+Cj ≤ Tj < Ti

RM is an optimal scheduling algorithm for fixed 
priorities. I.e., if any algorithmus can find a 
valid schedule, RM can also find one.
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Rate-monotonic scheduling is "optimal"
• We need to show: 

 

• Proof by contradiction: we assume… 
algorithm A finds a valid schedule, but RM does not 
• In schedule A: prio(𝜏i) = prio(𝜏j) + 1 and Ti > Tj  (different to RM)

Ci+Cj ≤ Tj holds since the schedule is valid and 𝜏i has a higher priority 

What is the effect of swapping the priorities (only) of these two tasks?
𝜏j can be scheduled, since it now has higher priority  
𝜏i can also be scheduled since Ci+Cj ≤ Tj < Ti

We obtain an RM schedule by applying a finite number of these swaps 
This is also a valid schedule → contradiction → RM is optimal!

RM is an optimal scheduling algorithm for fixed 
priorities. I.e., if any algorithmus can find a 
valid schedule, RM can also find one.
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RM scheduling: conclusion

• RM is easy to apply and optimal for fixed priorities 
• the OS only needs to provide a "fixed priority" scheduler 

• Response time analysis enables an exact schedulability test 
• Important for hard real-time systems: mathematical guarantee! 

• In many cases, the 70% rule is sufficient 

• Attention: 
• Assumptions A.1-5 must hold! 

• uniprocessor, no task dependencies, … 
• WCET estimation difficult for modern processors 

• memory hierarchies, out-of-order execution,  
DRAM access times, ... 

• In any case, the complete system has to be analyzed
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Example: Earliest Deadline First

• Earliest Deadline First (EDF) scheduling is a scheduling 
strategy for preemptive, periodic and aperiodic tasks with hard 
deadlines. The priorities are assigned dynamically (at runtime).
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EDF algorithm
• Tasks which are ready are sorted in  

order of their absolute deadlines 
• If the first task in the list has an earlier deadline than the currently 

running task, the running task is preempted immediately!

In general, deadlines 
are specified as 
relative times

Example:
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Optimality of EDF
• EDF minimizes the maximum delay of tasks

• If a schedule exists which is able to keep all deadlines, then 
EDF also keeps all deadlines → EDF is optimal 
• …for independent tasks with dynamic priorities 

• Especially for periodic tasks the following holds:  
If U ≤ 1, then EDF always finds a valid schedule  
(without missing deadlines!)

Task 1

Task 2

Task 3

delay 1

delay 2

no delay

Proof in [6]
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EDF-Scheduling: Conclusion
• Simply optimal for periodic as well as aperiodic task sets 

• Achieves a higher utilization than RM scheduling by using 
dynamic priorities 

• Attention: 
• EDF is usually only implemented in special real-time 

operating systems 
• No information about the number and duration of deadline 

misses can be obtained 
• Less predictable than e.g. RM 
• Response times can vary significantly: "jitter" 
• In overload situations: "domino effect"



Operating Systems 13: Real-time scheduling 29

Outlook: Extending the strategies
• Working with sporadic tasks 

• Limited arrival rate, but no strict period 
• Consideration of task dependencies 
• Increase CPU utilization 

• mixed-criticality systems 
• restriction to "harmonic tasks" 

• periods are integer multiples of each other 
• Modus changes 

• e.g. indicator/stepper motor becomes active 
• Handle [temporary] overload 
• Adaptation to [heterogeneous] multiprocessor systems
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