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Processes once again…
• Processes are (still…) the central abstraction for activities in 

current operating system 
• illusion of independent sequential control flows as a concept 

(sequence of CPU and I/O bursts) 
• in real life, the CPU is multiplexed 

• Unix systems provide a set of system calls to create and 
manage processes and to provide communication channels 
• in addition, modern operating systems also support light- 

and featherweight processes 
• Processes are controlled by the operating system 

• allocation of resources 
• preemption of resources
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Dispatch states
Depending on the scheduling level, every process is assigned a 
logical state representing its dispatch state at a given point in 
time: 

• short-term scheduling 
• ready, running, blocked 

• medium-term scheduling 
• swapped and ready, swapped and blocked 

• long-term scheduling 
• created, terminated Rule of thumb how often  

a scheduling decision or 
state change occurs: 
• short term: µs – ms 
• medium term: ms – min 
• long term: min – hours
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Short-term scheduling
• ready to be executed by the CPU 

• a process is on the ready (waiting) list for CPU allocation 
• its list position depends on the scheduling algorithm 

• running: resource "CPU" has been allocated to the process 
• a process is computing: "CPU burst" 
• there is only one running process per CPU at any given 

moment in time 

• blocked: waiting for an event 
• a process performs input or output: "I/O burst" 
• it waits for the occurrence of at least one condition
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Medium-term scheduling
A process is completely swapped out 
•  the complete contents of its address space are moved to 

background storage 
• the main memory it used is released 

The process has to wait to be swapped in: 
• swapped out ready (READY SUSPEND) 

• CPU allocation ignores this process 
• the process is on a waiting list for memory allocation 

• swapped out blocked (BLOCKED SUSPEND) 
• the process waits for an event (it is blocked) 
• if this event takes place, the process state changes to 

READY SUSPEND
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Long-term scheduling
• Processes are created (NEW) and ready to be started: 
fork(2) 

• a process instance was created and assigned to a program 
• the allocation of the resource "memory" might still be 

outstanding (e.g. when paging in parts of the process address 
space on demand) 

• Processes are terminated (EXIT) and wait for their removal: 
exit(2)/wait(2) 

• the process is terminated, its resources are released 
• the "cleanup" after process termination can be performed by 

a different process (e.g. in Unix)
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State transitions

Long term
Medium term

Short term

READY

RUNNING

BLOCKED

EXIT

NEW

READY 
SUSPEND

BLOCKED 
SUSPEND

We focus on 
short term  

scheduling now

2⃣

1⃣

3⃣

4⃣
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Scheduling points
• Every transition into the READY state updates the CPU waiting 

queue 
• a decision about the queueing of its process control blocks is 

made 
• the result depends on the CPU allocation strategy of the system 

• Scheduling and rescheduling takes places… 
1. after a process is created 
2. if a process yields control of the CPU 
3. if the event a process is waiting for takes place 
4. when a swapped out process is considered for CPU allocation 

again 
• A process can be forced to yield (release) the CPU 
→ preemptive scheduling 

• e.g. using a timer interrupt
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First-Come First-Served – FCFS
• A simple and fair (?) algorithm: "first come first served" 
• Queueing criterion is the arrival time of a process 
• Algorithm is non preempting and assumes cooperating processes 

 
 
 
 
 
 
 
 

• Example: 
• the normalized runtime (Tr / Ts) of C is bad in relation to its 

service time Ts

Classical  
scheduling

Process
Times

arrival service time Ts start end runtime Tr Tr/Ts

A 0 1 0 1 0 1.00
B 1 100 1 101 100 1.00
C 2 1 101 102 100 100.00
D 3 100 102 202 199 1.99

average 26.00
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Discussion: FCFS – "convoi effect"
• This problem affects short running I/O-intensive processes 

which follow long CPU-intensive processes 
• Processes with long CPU bursts benefit from this 
• Processes with short CPU bursts are disadvantaged 

• FCFS minimizes the number of context switches. 
However, the convoi effect causes a number of problems: 

• large response time 
• low I/O throughput 

• If the system runs a mix of CPU- and I/O-intensive processes, 
FCFS is not a suitable approach 

• it is typically only used in batch processing systems
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Round Robin (RR)
• Reduces the disadvantage of processes with short CPU bursts:  

"everyone for themselves!" 
• the available processor time is split into time slices 

• When a time slice is used up, a process switch can occur 
• the interrupted process is moved to the end of the ready list 
• the next process is selected from ready list according to FCFS 

• Basis for protecting access to the CPU:  
a timer enforces an interrupt at the end of each time slice 

• The efficiency of this approach depends essentially on the chosen 
length of the time slice 

• too long ➛  round robin degenerates to FCFS  
• too short ➛ very high overhead for process switches 

• Rule of thumb: time slices should be "a bit longer" than the 
duration of a "typical interaction"

Classical  
scheduling
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Discussion: RR – performance problems
• I/O-intensive processes terminate their CPU burst before their 

time slice is used up 
• they block and are added back to the ready list when their  

I/O burst is finished 
• CPU-intensive processes, however, use their time slice 

completely 
• they are then preempted and immediately added to the end of 

the ready list 
• The amount of CPU time for processes is thus distributed 

inequally ➛ CPU-intensive processes get a larger share 
• I/O-intensive processes are not served as well, thus the 

utilization of I/O devices is low 
• the variance of the response time of I/O-intensive processes 

increases
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Virtual Round Robin (VRR)
• Avoids the unequal distribution of CPU times with RR 

• processes are added to a preferred list when their I/O burst 
ends 

• this list is considered before the ready list 

• Virtual Round Robin uses time slices of different lengths 
• processes on the preferred list are only allocated a partial 

time slice 
• they can use the remaining run time they did not use in their 

previous time slice 
• if their CPU burst last longer, they are moved to the ready list 

• Scheduling in VRR involves a bit more overhead compared to 
RR

Classical  
scheduling
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Shortest process next (SPN)
• Reduces the disadvantage of short CPU bursts with FCFS:  

"let the shortest come first…" 
• this requires knowledge about the process run times 
• no preemption 

• The main problem here is the prediction of run times 
• batch processing: 

the programmer annotates the required time limit 
• interactive procession:  

time limit estimated based on previous CPU burst lengths of 
the process 

• Response times are reduced significantly and the overall system 
performance is increased 

• However: danger of starvation of CPU-intensive processes

Classical  
scheduling
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Discussion: SPN – weighting bursts
• CPU bursts further in the past should be weighted less: 

• values of the constant weighting factor α: 0 < α < 1 
• it represents the relative weighting of  

single CPU bursts in the time line of  
the process 

• Recursive solving leads us to... 
 
 
 

• for α = 0.8:

This statistical approach 
is also called 

exponential smooting
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Shortest Remaining Time First (SRTF)
• Extends SPN with preemption 

• thus appropriate for interactive operation 
• results in improved runtimes 

• The running process is preempted if Texp  < Trest 

• Texp is the expected CPU burst length of an arriving process  
• Trest is the remaining CPU burst length of the running process 

• Difference to RR:  
SRTF is not based on timer interrupts, but nevertheless 
preemptive 

• We have to estimate burst lengths instead 
• Like SPN, processes can also starve using SRTF

Classical  
scheduling



Operating Systems 12: Uniprocessor scheduling 17

Highest Response Ratio Next – HRRN
• Avoids the possible starvation of CPU-intensive  

processes that can occur with SRTF 
• HRRN considers the aging of processes – their waiting time 

• w is the "waiting time" the process has accumulated so far 
• s is the "expected service time" 

• HRRN always selects the process with the highest value of R 
• Again, this is based on an estimation of the service time

Classical  
scheduling
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Feedback (FB)
• Short processes obtain an advantage without having to estimate 

the relative lengths of processes 
• Basis is the penalization of long running processes 
• Processes are preempted 

• Multiple ready lists used according to number of priority levels 
• when a process arrives for the first time, it has highest priority 
• when its time slice is used up, it is moved to the next lower 

priority level 
• the lowest level works according to RR 

• Short processes finish in a relatively short amount of time, but 
long processes can starve 

• It is possible to consider the waiting time to move a process 
back to a higher priority level (anti-aging)

Classical  
scheduling
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Feedback (FB) scheduling model

"Multilevel feedback queues"

CPU

CPU

CPU

FCFS (time quantum = 20 = 1)

FCFS (time quantum = 21 = 2)

FCFS (time quantum = 2n)

preemption

preemption

preemption

exit

exit

exit

entry

"anti aging"

"anti aging"
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Discussion: Priorities
• Process priorities significantly influence scheduling decisions 

• Static priorities are defined when a process is created 
• their value cannot be changed during the execution of the 

process 
• this enforces a deterministic ordering of processes 

• Dynamic priorities are updated while a process is running 
• the operating system usually updates the priorities, but also 

the user can be allowed to influence priorities 
• SPN, SRTF, HRRN and FB are special cases of this 

approach
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Combination – Multi-level scheduling
• Multiple scheduling strategies can be combined (i.e., used 

"simultaneously"), e.g. support of 
• interactive and background processing or 
• realtime and non-realtime processing 

• interactive / real-time critical processes are preferred 

• The implementation typically uses multiple ready lists 
• every ready lists has its own scheduling strategy 
• the lists are typically processed using priority, FCFS or RR 
• overall, a very complex approach! 

• FB can be seen as a special case of this approach
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Combination – Multi-level scheduling

System processes

Interactive processes

Batch processes

Student processes

(adapted from Silberschatz)
lowest priority

highest priority

😉
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Objectives for evaluation
• User oriented: 

• Run time – time between start and termination of a process including 
the waiting time(s) → batch processing 

• Response time – time between user input and program response  
→ interactive systems 

• Tardiness – for the interaction with external physical processes, 
deadlines have to be adhered to → real-time systems 

• Predictability – processes are always processed identically 
independent of the load → hard real-time systems 

• System oriented: 
• Throughput – finish as many processes as possible per time unit 
• CPU load – keep the CPU busy at all times 

• avoid overhead (scheduling decisions, context switches) 
• Fairness – no process should be disadavantaged (e.g. by starvation) 
• Load balancing – I/O devices should also be utilized uniformly
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Quantitative comparison
Process 

Start 
Service time Ts

A 
0 
3

B 
2 
6

C 
4 
4

D 
6 
5

E 
8 
2

average

FCFS
End 

Runtime Tr 
Tr/Ts

3 
3 

1.00

9 
7 

1.17

13 
9 

2.25

18 
12 

2.40

20 
12 

6.00
8.60 
2.56

RR 
q=1

End 
Runtime Tr 

Tr/Ts

4 
4 

1.33

18 
16 

2.67

17 
13 

3.25

20 
14 

2.80

15 
7 

3.50
10.80 

2.71

SPN
End 

Runtime Tr 
Tr/Ts

3 
3 

1.00

9 
7 

1.17

15 
11 

2.75

20 
14 

2.80

11 
3 

1.50
7.60 
1.84

SRTF
End 

Runtime Tr 
Tr/Ts

3 
3 

1.00

15 
13 

2.17

8 
4 

1.00

20 
14 

2.80

10 
2 

1.00
7.20 
1.59

HRRN
End 

Runtime Tr 
Tr/Ts

3 
3 

1.00

9 
7 

1.17

13 
9 

2.25

20 
14 

2.80

15 
7 

3.50
8.00 
2.14

FB 
q=1

End 
Runtime Tr 

Tr/Ts

4 
4 

1.33

20 
18 

3.00

16 
12 

3.00

19 
13 

2.60

11 
3 

1.50
10.00 

2.29
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Qualitative comparison
Strategy preemptive/ 

cooperative
prediction 
required?

implement. 
overhead

starvation 
possible

effect on  
processes

FCFS cooperative no minimal no convoi 
effect

RR preemptive 
(timer) no low no

fair, but dis- 
advantage for 
I/O-int. proc.

SPN cooperative yes large yes
disadvantage 
for CPU-int. 
processes

SRTF preemptive 
(at start) yes larger yes

disadvantage 
for CPU-int. 
processes

HRRN cooperative yes large no good load 
distribution

FB preemptive 
(timer) no larger yes

can prefer 
I/O-intensive 
processes
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Scheduling in Unix
• Two step preemptive approach 

• objective: reduce response times 
• No long term scheduling 
• high-level: mid term, using swapping 
• low-level: short term preemptive, MLFB, dynamic process priorities 

 
 

• Once a second: 
• every "tick" (1/10 s) reduces the "usage entitlement" for the 

CPU by increasing cpu_usage for the running process 
• high prio value = low priority! 

• The amount of cpu_usage over the time is reduced (smoothed) 
• the smoothing function is different in various versions of Unix
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UNIX – 4.3 BSD (1)
• The user priority is determined at every fourth tick (40ms): 

 
 

• Pcpu is incremented (by 1) with every tick and is smoothed once 
a second: 
 
 
 

• Smooting for processes that are woken up and were blocked for 
more than 1 second:
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UNIX – 4.3 BSD (2)
• Smoothing (using a decay filter):  

for an assumed average load of 1: Pcpu  := 0.66 · Pcpu + Pnice 

• In addition, we assume that a process collects Ti ticks in the time 
interval i and Pnice = 0 

Pcpu1  = 0.66 T0 
Pcpu2  = 0.66 (T1  + 0.66 T0 ) = 0.66 T1 + 0.44 T0 
Pcpu3  = 0.66 T2  + 0.44 T1  + 0.30 T0 
Pcpu4  = 0.66 T3  + … + 0.20 T0 
Pcpu5  = 0.66 T4  + … + 0.13 T0 

• After 5 seconds, only 13% of the "old" load are considered
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Windows NT – Priority classes

29

• Preemptive, priority- and time slice-based thread scheduling 
• preemption also occurs for threads executing in the kernel  
→ different to Unix 

• RR for processes of the same priority:  
0 reserved, 1–15 variable, 16-31 real-time 

• The thread type (fore-/background thread) determines the time 
quantum available to the thread → quantum stretching 

• quantum (between 6 and 36) is reduced by 3 or 1 with every 
tick (10 or 15 ms), if the thread changes to the waiting state 

• the length of a time slice varies with the process: 20–180 ms 
• foreground/background, server or desktop configuration 

• In addition, NT has variable priorities: 
• process_priority_class  + relative_thread_priority  + boost
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NT – Adaptive priorities
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• Thread priorities are dynamically increased when certain 
conditions are given: dynamic boost 

• Completion of input/output (disk):                +1 
• Mouse movement, keyboard input:           +6 
• Deblocking, release of resources (semaphore, event, mutex) 

                                                                    +1 
• Other events (network, pipe, …)               +2 
• Event in foreground process                      +2 

• Dynamic boosts are decreased again ("used up") with every tick 
• Guarantee of progress 

• avoids the starvation of threads 
• up to 10 "disadvantaged" threads are allocated priority 15 for 

two time slices every 3–4 seconds
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Conclusions
• Operating systems take CPU scheduling decisions on three different 

levels: 
• Long term scheduling: admission of processes to the system 
• Medium term scheduling: swapping of processes 
• Short term scheduling: short-term CPU allocation 

• All algorithms discussed in this lecture are considered short term 
scheduling approaches: 

• there are different user- and system oriented criteria to assess the 
properties of a CPU scheduling algorithm 

• the selection of an approach is difficult and can have unexpected 
negative effects 

• the "best" approach can only be found by an analysis of typical 
application profiles and all given constraints


