
Operating Systems
Lecture 12: Uniprocessor scheduling

Michael Engel

Operating Systems 12: Uniprocessor scheduling 2

Processes once again…
• Processes are (still…) the central abstraction for activities in

current operating system
• illusion of independent sequential control flows as a concept

(sequence of CPU and I/O bursts)
• in real life, the CPU is multiplexed

• Unix systems provide a set of system calls to create and
manage processes and to provide communication channels
• in addition, modern operating systems also support light-

and featherweight processes
• Processes are controlled by the operating system

• allocation of resources
• preemption of resources

Operating Systems 12: Uniprocessor scheduling 3

Dispatch states
Depending on the scheduling level, every process is assigned a
logical state representing its dispatch state at a given point in
time:

• short-term scheduling
• ready, running, blocked

• medium-term scheduling
• swapped and ready, swapped and blocked

• long-term scheduling
• created, terminated Rule of thumb how often

a scheduling decision or
state change occurs:
• short term: µs – ms
• medium term: ms – min
• long term: min – hours

Operating Systems 12: Uniprocessor scheduling 4

Short-term scheduling
• ready to be executed by the CPU

• a process is on the ready (waiting) list for CPU allocation
• its list position depends on the scheduling algorithm

• running: resource "CPU" has been allocated to the process
• a process is computing: "CPU burst"
• there is only one running process per CPU at any given

moment in time

• blocked: waiting for an event
• a process performs input or output: "I/O burst"
• it waits for the occurrence of at least one condition

Operating Systems 12: Uniprocessor scheduling 5

Medium-term scheduling
A process is completely swapped out
• the complete contents of its address space are moved to

background storage
• the main memory it used is released

The process has to wait to be swapped in:
• swapped out ready (READY SUSPEND)

• CPU allocation ignores this process
• the process is on a waiting list for memory allocation

• swapped out blocked (BLOCKED SUSPEND)
• the process waits for an event (it is blocked)
• if this event takes place, the process state changes to

READY SUSPEND

Operating Systems 12: Uniprocessor scheduling 6

Long-term scheduling
• Processes are created (NEW) and ready to be started:
fork(2)

• a process instance was created and assigned to a program
• the allocation of the resource "memory" might still be

outstanding (e.g. when paging in parts of the process address
space on demand)

• Processes are terminated (EXIT) and wait for their removal:
exit(2)/wait(2)

• the process is terminated, its resources are released
• the "cleanup" after process termination can be performed by

a different process (e.g. in Unix)

Operating Systems 12: Uniprocessor scheduling
7

State transitions

Long term
Medium term

Short term

READY

RUNNING

BLOCKED

EXIT

NEW

READY
SUSPEND

BLOCKED
SUSPEND

We focus on
short term

scheduling now

2⃣

1⃣

3⃣

4⃣

Operating Systems 12: Uniprocessor scheduling 8

Scheduling points
• Every transition into the READY state updates the CPU waiting

queue
• a decision about the queueing of its process control blocks is

made
• the result depends on the CPU allocation strategy of the system

• Scheduling and rescheduling takes places…
1. after a process is created
2. if a process yields control of the CPU
3. if the event a process is waiting for takes place
4. when a swapped out process is considered for CPU allocation

again
• A process can be forced to yield (release) the CPU
→ preemptive scheduling

• e.g. using a timer interrupt

Operating Systems 12: Uniprocessor scheduling 9

First-Come First-Served – FCFS
• A simple and fair (?) algorithm: "first come first served"
• Queueing criterion is the arrival time of a process
• Algorithm is non preempting and assumes cooperating processes

• Example:
• the normalized runtime (Tr / Ts) of C is bad in relation to its

service time Ts

Classical
scheduling

Process
Times

arrival service time Ts start end runtime Tr Tr/Ts

A 0 1 0 1 0 1.00
B 1 100 1 101 100 1.00
C 2 1 101 102 100 100.00
D 3 100 102 202 199 1.99

average 26.00

Operating Systems 12: Uniprocessor scheduling 10

Discussion: FCFS – "convoi effect"
• This problem affects short running I/O-intensive processes

which follow long CPU-intensive processes
• Processes with long CPU bursts benefit from this
• Processes with short CPU bursts are disadvantaged

• FCFS minimizes the number of context switches.
However, the convoi effect causes a number of problems:

• large response time
• low I/O throughput

• If the system runs a mix of CPU- and I/O-intensive processes,
FCFS is not a suitable approach

• it is typically only used in batch processing systems

Operating Systems 12: Uniprocessor scheduling 11

Round Robin (RR)
• Reduces the disadvantage of processes with short CPU bursts:

"everyone for themselves!"
• the available processor time is split into time slices

• When a time slice is used up, a process switch can occur
• the interrupted process is moved to the end of the ready list
• the next process is selected from ready list according to FCFS

• Basis for protecting access to the CPU:
a timer enforces an interrupt at the end of each time slice

• The efficiency of this approach depends essentially on the chosen
length of the time slice

• too long ➛ round robin degenerates to FCFS
• too short ➛ very high overhead for process switches

• Rule of thumb: time slices should be "a bit longer" than the
duration of a "typical interaction"

Classical
scheduling

Operating Systems 12: Uniprocessor scheduling 12

Discussion: RR – performance problems
• I/O-intensive processes terminate their CPU burst before their

time slice is used up
• they block and are added back to the ready list when their

I/O burst is finished
• CPU-intensive processes, however, use their time slice

completely
• they are then preempted and immediately added to the end of

the ready list
• The amount of CPU time for processes is thus distributed

inequally ➛ CPU-intensive processes get a larger share
• I/O-intensive processes are not served as well, thus the

utilization of I/O devices is low
• the variance of the response time of I/O-intensive processes

increases

Operating Systems 12: Uniprocessor scheduling 13

Virtual Round Robin (VRR)
• Avoids the unequal distribution of CPU times with RR

• processes are added to a preferred list when their I/O burst
ends

• this list is considered before the ready list

• Virtual Round Robin uses time slices of different lengths
• processes on the preferred list are only allocated a partial

time slice
• they can use the remaining run time they did not use in their

previous time slice
• if their CPU burst last longer, they are moved to the ready list

• Scheduling in VRR involves a bit more overhead compared to
RR

Classical
scheduling

Operating Systems 12: Uniprocessor scheduling 14

Shortest process next (SPN)
• Reduces the disadvantage of short CPU bursts with FCFS:

"let the shortest come first…"
• this requires knowledge about the process run times
• no preemption

• The main problem here is the prediction of run times
• batch processing:

the programmer annotates the required time limit
• interactive procession:

time limit estimated based on previous CPU burst lengths of
the process

• Response times are reduced significantly and the overall system
performance is increased

• However: danger of starvation of CPU-intensive processes

Classical
scheduling

Operating Systems 12: Uniprocessor scheduling 15

Discussion: SPN – weighting bursts
• CPU bursts further in the past should be weighted less:

• values of the constant weighting factor α: 0 < α < 1
• it represents the relative weighting of

single CPU bursts in the time line of
the process

• Recursive solving leads us to...

• for α = 0.8:

This statistical approach
is also called

exponential smooting

Operating Systems 12: Uniprocessor scheduling 16

Shortest Remaining Time First (SRTF)
• Extends SPN with preemption

• thus appropriate for interactive operation
• results in improved runtimes

• The running process is preempted if Texp < Trest

• Texp is the expected CPU burst length of an arriving process
• Trest is the remaining CPU burst length of the running process

• Difference to RR:
SRTF is not based on timer interrupts, but nevertheless
preemptive

• We have to estimate burst lengths instead
• Like SPN, processes can also starve using SRTF

Classical
scheduling

Operating Systems 12: Uniprocessor scheduling 17

Highest Response Ratio Next – HRRN
• Avoids the possible starvation of CPU-intensive

processes that can occur with SRTF
• HRRN considers the aging of processes – their waiting time

• w is the "waiting time" the process has accumulated so far
• s is the "expected service time"

• HRRN always selects the process with the highest value of R
• Again, this is based on an estimation of the service time

Classical
scheduling

Operating Systems 12: Uniprocessor scheduling 18

Feedback (FB)
• Short processes obtain an advantage without having to estimate

the relative lengths of processes
• Basis is the penalization of long running processes
• Processes are preempted

• Multiple ready lists used according to number of priority levels
• when a process arrives for the first time, it has highest priority
• when its time slice is used up, it is moved to the next lower

priority level
• the lowest level works according to RR

• Short processes finish in a relatively short amount of time, but
long processes can starve

• It is possible to consider the waiting time to move a process
back to a higher priority level (anti-aging)

Classical
scheduling

Operating Systems 12: Uniprocessor scheduling 19

Feedback (FB) scheduling model

"Multilevel feedback queues"

CPU

CPU

CPU

FCFS (time quantum = 20 = 1)

FCFS (time quantum = 21 = 2)

FCFS (time quantum = 2n)

preemption

preemption

preemption

exit

exit

exit

entry

"anti aging"

"anti aging"

Operating Systems 12: Uniprocessor scheduling 20

Discussion: Priorities
• Process priorities significantly influence scheduling decisions

• Static priorities are defined when a process is created
• their value cannot be changed during the execution of the

process
• this enforces a deterministic ordering of processes

• Dynamic priorities are updated while a process is running
• the operating system usually updates the priorities, but also

the user can be allowed to influence priorities
• SPN, SRTF, HRRN and FB are special cases of this

approach

Operating Systems 12: Uniprocessor scheduling 21

Combination – Multi-level scheduling
• Multiple scheduling strategies can be combined (i.e., used

"simultaneously"), e.g. support of
• interactive and background processing or
• realtime and non-realtime processing

• interactive / real-time critical processes are preferred

• The implementation typically uses multiple ready lists
• every ready lists has its own scheduling strategy
• the lists are typically processed using priority, FCFS or RR
• overall, a very complex approach!

• FB can be seen as a special case of this approach

Operating Systems 12: Uniprocessor scheduling 22

Combination – Multi-level scheduling

System processes

Interactive processes

Batch processes

Student processes

(adapted from Silberschatz)
lowest priority

highest priority

😉

Operating Systems 12: Uniprocessor scheduling 23

Objectives for evaluation
• User oriented:

• Run time – time between start and termination of a process including
the waiting time(s) → batch processing

• Response time – time between user input and program response
→ interactive systems

• Tardiness – for the interaction with external physical processes,
deadlines have to be adhered to → real-time systems

• Predictability – processes are always processed identically
independent of the load → hard real-time systems

• System oriented:
• Throughput – finish as many processes as possible per time unit
• CPU load – keep the CPU busy at all times

• avoid overhead (scheduling decisions, context switches)
• Fairness – no process should be disadavantaged (e.g. by starvation)
• Load balancing – I/O devices should also be utilized uniformly

Operating Systems 12: Uniprocessor scheduling 24

Quantitative comparison
Process

Start
Service time Ts

A
0
3

B
2
6

C
4
4

D
6
5

E
8
2

average

FCFS
End

Runtime Tr
Tr/Ts

3
3

1.00

9
7

1.17

13
9

2.25

18
12

2.40

20
12

6.00
8.60
2.56

RR
q=1

End
Runtime Tr

Tr/Ts

4
4

1.33

18
16

2.67

17
13

3.25

20
14

2.80

15
7

3.50
10.80

2.71

SPN
End

Runtime Tr
Tr/Ts

3
3

1.00

9
7

1.17

15
11

2.75

20
14

2.80

11
3

1.50
7.60
1.84

SRTF
End

Runtime Tr
Tr/Ts

3
3

1.00

15
13

2.17

8
4

1.00

20
14

2.80

10
2

1.00
7.20
1.59

HRRN
End

Runtime Tr
Tr/Ts

3
3

1.00

9
7

1.17

13
9

2.25

20
14

2.80

15
7

3.50
8.00
2.14

FB
q=1

End
Runtime Tr

Tr/Ts

4
4

1.33

20
18

3.00

16
12

3.00

19
13

2.60

11
3

1.50
10.00

2.29

Operating Systems 12: Uniprocessor scheduling 25

Qualitative comparison
Strategy preemptive/

cooperative
prediction
required?

implement.
overhead

starvation
possible

effect on
processes

FCFS cooperative no minimal no convoi
effect

RR preemptive
(timer) no low no

fair, but dis-
advantage for
I/O-int. proc.

SPN cooperative yes large yes
disadvantage
for CPU-int.
processes

SRTF preemptive
(at start) yes larger yes

disadvantage
for CPU-int.
processes

HRRN cooperative yes large no good load
distribution

FB preemptive
(timer) no larger yes

can prefer
I/O-intensive
processes

Operating Systems 12: Uniprocessor scheduling 26

Scheduling in Unix
• Two step preemptive approach

• objective: reduce response times
• No long term scheduling
• high-level: mid term, using swapping
• low-level: short term preemptive, MLFB, dynamic process priorities

• Once a second:
• every "tick" (1/10 s) reduces the "usage entitlement" for the

CPU by increasing cpu_usage for the running process
• high prio value = low priority!

• The amount of cpu_usage over the time is reduced (smoothed)
• the smoothing function is different in various versions of Unix

Operating Systems 12: Uniprocessor scheduling 27

UNIX – 4.3 BSD (1)
• The user priority is determined at every fourth tick (40ms):

• Pcpu is incremented (by 1) with every tick and is smoothed once
a second:

• Smooting for processes that are woken up and were blocked for
more than 1 second:

Operating Systems 12: Uniprocessor scheduling 28

UNIX – 4.3 BSD (2)
• Smoothing (using a decay filter):

for an assumed average load of 1: Pcpu := 0.66 · Pcpu + Pnice

• In addition, we assume that a process collects Ti ticks in the time
interval i and Pnice = 0

Pcpu1 = 0.66 T0
Pcpu2 = 0.66 (T1 + 0.66 T0) = 0.66 T1 + 0.44 T0
Pcpu3 = 0.66 T2 + 0.44 T1 + 0.30 T0
Pcpu4 = 0.66 T3 + … + 0.20 T0
Pcpu5 = 0.66 T4 + … + 0.13 T0

• After 5 seconds, only 13% of the "old" load are considered

Operating Systems 12: Uniprocessor scheduling

Windows NT – Priority classes

29

• Preemptive, priority- and time slice-based thread scheduling
• preemption also occurs for threads executing in the kernel
→ different to Unix

• RR for processes of the same priority:
0 reserved, 1–15 variable, 16-31 real-time

• The thread type (fore-/background thread) determines the time
quantum available to the thread → quantum stretching

• quantum (between 6 and 36) is reduced by 3 or 1 with every
tick (10 or 15 ms), if the thread changes to the waiting state

• the length of a time slice varies with the process: 20–180 ms
• foreground/background, server or desktop configuration

• In addition, NT has variable priorities:
• process_priority_class + relative_thread_priority + boost

Operating Systems 12: Uniprocessor scheduling

NT – Adaptive priorities

30

• Thread priorities are dynamically increased when certain
conditions are given: dynamic boost

• Completion of input/output (disk): +1
• Mouse movement, keyboard input: +6
• Deblocking, release of resources (semaphore, event, mutex)

 +1
• Other events (network, pipe, …) +2
• Event in foreground process +2

• Dynamic boosts are decreased again ("used up") with every tick
• Guarantee of progress

• avoids the starvation of threads
• up to 10 "disadvantaged" threads are allocated priority 15 for

two time slices every 3–4 seconds

Operating Systems 12: Uniprocessor scheduling 31

Conclusions
• Operating systems take CPU scheduling decisions on three different

levels:
• Long term scheduling: admission of processes to the system
• Medium term scheduling: swapping of processes
• Short term scheduling: short-term CPU allocation

• All algorithms discussed in this lecture are considered short term
scheduling approaches:

• there are different user- and system oriented criteria to assess the
properties of a CPU scheduling algorithm

• the selection of an approach is difficult and can have unexpected
negative effects

• the "best" approach can only be found by an analysis of typical
application profiles and all given constraints

