
Operating Systems
Lecture 9:

Memory management

Michael Engel

Operating Systems 09: Memory management 2

Resources (again)
• Tasks of an operating system:

• Administering the resources of a computer
• Creating abstractions that allow applications to easily and

efficiently use these resources
• So far: processes

• Concept to abstract
from a real CPU

• Now: memory
• Administration of main

and background memory
(secondary storage)

Processor
(CPU)

main memory
(RAM)

I/O
interfaces

I/O
devices

secon-
dary

storage

Operating Systems 09: Memory management 3

Multiprogramming (again)
• CPU load under the assumption of a given probability to

wait for I/O:

➛ Multiprogramming is essential to guarantee a high
CPU utilization
• When processes are started and terminated, memory

has to be allocated and released dynamically!

[Tanenbaum: Modern Operating Systems]

Load L = 1-pn

Operating Systems 09: Memory management 4

Memory management requirements
• Multiple processes need main memory

• Processes are located in
different positions in main
memory

• Protection requirements:
• Protect the OS from processes
• Protect processes against

accesses from other processes
• Size of main memory may not

suffice for all processes together
➛ OS has to know about free memory areas,

administer and allocate them
➛ Swapping of processes
➛ Relocation of instructions in programs
➛ Use hardware support

The OS and two
applications in
main memory

Operating system

Process 1

Process 2

Operating Systems 09: Memory management 5

Basic policies and strategies
… on all levels of the memory hierarchy:
• Placement policy:

• Which area of memory should be allocated?
• The one with the largest/smallest fragmentation?
• Not that relevant, since fragmentation is secondary

• Fetch policy:
• When should we swap in memory contents?

• On demand or predictive
• Replacement policy:

• Which memory contents should be swapped out
if the system is running out of free memory?

• The oldest, least used one
• The one that is used for the longest amount of time

L1 Cache

L2 Cache

RAM

Regs

Background storage

Operating Systems 09: Memory management 6

Memory allocation: problem
• Available memory

Memory map of a simple 32 bit system

ROM

RAM

RAM

=

===

0

0xffffffff

main memory area 2

main memory area 1

I/O devices available address space
(here with 32 bit wide addresses)

Operating Systems 09: Memory management 7

Memory allocation: problem
The available main memory is used by…
• User processes

• Program code (text)
• Program data (data)
• Dynamic memory allocations (stack, heap)

• Operating system
• Operating system code and data
• Process control blocks
• Data buffers for input/output
• ...

• Memory allocation is necessary!

Operating Systems 09: Memory management 8

Static memory allocation
• Idea:

use fixed memory areas for the OS and for user processes

• Problems
• Limited degree of multiprogramming
• Limitation of other resources

e.g. I/O bandwidth due to buffers that are too small
• Unused OS memory cannot be used by application processes (and

vice versa)

➛ Use dynamic memory allocation

Operating Systems 09: Memory management 9

Dynamic memory allocation
• Segments

• contiguous area of memory
(memory area with successive addresses)

• Allocation and release of segments
• All the segments that are part of a program we have seen already:

• text segment(s)
• data segment(s)
• stack segment (local variables, parameters, return addresses, ...)

• Search for suitable memory areas for allocation
• especially when a program is started

• Placement policies required
• especially important: management of free memory

Operating Systems 09: Memory management 10

Memory allocation
• Free (sometimes also allocated) segments of main memory have to be

represented
• Simple approach: Bit lists

A B C D Memory

0 8 16

11111000

11111111

11001111

…

Problems:
• Bit lists can require lots of memory
• When releasing memory, the size of

the memory block to be released has
to be known or provided

• Linear search ➛ slow

Operating Systems 09: Memory management 11

Memory allocation (2)
• Linked list

Representation of used and free segments

A B C D Memory

0 8 16

Problem:
• Memory required for

the list has to be
allocated (dynamically)

u 0 5 f 5 3 u 8 6

u 14 4 f 18 2 u 20 4

used/free start length

Operating Systems 09: Memory management 12

Memory allocation (3)
• Linked list in free memory

A minimum gap size has to be guaranteed to store
the length of and the pointer to the next free gap!

A B C D Memory

0 8 16

5 6 4 43 2

Problems:
• To increase efficiency, backwards

links might be required in addition
• This representation is dependent on

the allocation strategy

Operating Systems 09: Memory management 13

Releasing memory
• Combine the gaps

After releasing B:

A B C D Memory

0 8 16

5 6 4 43 2

A C D Memory

0 8 16

5 4 49 2

Operating Systems 09: Memory management 14

Placement strategies
…based on different sorting policies for the list of gaps:
• First Fit (sorted after memory address)

• use the first fitting gap
• Rotating First Fit / Next Fit (sorted after memory address)

• like first fit, but start with the most recently allocated gap
• avoids the generation of a large number of small gaps at the

beginning of the list (which happens with first fit)
• Best Fit (sorted after gap size – smallest first)

• find the smallest fitting gap
• Worst Fit (sorted after gap size – largest first)

• find the largest fitting gap
• Problems:

• gaps that are too small, fragmentation

Operating Systems 09: Memory management 15

Placement strategies (2)
• Buddy method: split memory dynamically into areas of a size 2n

Efficient representation of gaps and efficient algorithms to handle allocation

0 128 256 384 512 640 768 896 1024

1024

A 128 256 512Request: 70

A 64 256 512Request: 35 B

A 64 128 512Request: 80 B C

64 128 512Release A C128

128 512Request 60 CD128 B

B

128 512Release B CD128 64

128 512Release D C128 128

Release C 1024

Operating Systems 09: Memory management 16

Discussion: fragmentation
• External fragmentation

• Allocations creates memory fragments outside of the allocated
memory areas which cannot be used

• Problem with all list based strategies, e.g. first fit, best fit, ...

• Internal fragmentation
• Unused memory inside of allocated memory areas
• Problem e.g. with the buddy allocator

• since request sizes are rounded up to the next power of 2

Operating Systems 09: Memory management 17

Use of the different methods
• In the operating system (kernel) itself

• Management of system memory
• Allocation of memory to processes and the

operating system itself

• Inside of processes
• Management of heap memory
• Enables dynamic allocation of memory areas

by the process (using the malloc und free libc
functions)

• Areas of secondary storage
• Management of certain sections of secondary

memory
• e.g. the area used for process swapping

(swap space)

e.g. Buddy allocator
in Linux

typically using
linked lists

often using
bitmaps

Operating Systems 09: Memory management 18

Multiprogramming: swapping
• Segments of a process are swapped out to background memory and

released in main memory
• e.g. if I/O waiting times hinder a process from running

• Segments are swapped in back into main memory when the waiting time
ends

• Large amount of time required for swapping in and out
• Latency of the disk (e.g. positioning of a read/write head of a hard disk,

not a big problem with SSDs)
• Transfer time

background
memoryprocess 1

process 2

OS

process 1

process 2

main
memory

Operating Systems 09: Memory management 19

Swapping (2)
• Addresses in processes are usually linked statically

• Can only be swapped into the same location in
main memory

• Collisions with new segments allocated in memory
after the process was swapped out

• Possible solution: partitioning of main memory
• Only one process per partition
• Swapping in into the same partition as before
• Memory cannot be used optimally

• Better approach:
Dynamic allocation and program relocation

OS

partition 1

partition 2

partition 3

partition 4

Operating Systems 09: Memory management 20

Address linking and relocation
• Problem: Machine instructions use addresses

• e.g. a jump instruction that changes control flow into a function
• or a load instruction to read a variable value from the data segment

Different approaches to link the address used as the operand of an instruction:
• Absolute linking (at compile/link time)

• Addresses are fixed
• The program can only execute correctly at a certain location in memory

• Static linking (at load time)
• Absolute addresses are adapted (relocated) when a program is loaded

(started)
• Relocation information has to be provided by the compiler/assembler

• Dynamic linking (at execution time)
• Code accesses operands only indirectly
• The program can be relocated in memory at any time
• Resulting programs are slightly larger and slower

Operating Systems 09: Memory management 21

Address linking and relocation (2)
• Translation process

(creation of relocation information)

C program

int main() {
 exit (0);
}

Assembler

main:
 pushl %ebp
 movl %esp,%ebp
 pushl $0
 call exit
 addl $4, %esp
 popl %ebp
 ret

Created during compilation

Linker module (obj. file)

0000 55
0001 89E5
0003 6A00
0005 E800000000
000a 83C404
000d 89EC
000f 5D
0010 C3

main: 0

0006: exit ADDR32

test.c test.s test.o

Operating Systems 09: Memory management 22

Address linking and relocation (3)
• Linking and loading

Replace address of exit

Linker module

0000 55
0001 89E5
0003 6A00
0005 E800000000
000a 83C404
000d 89EC
000f 5D
0010 C3

main: 0

0006: exit ADDR32

Loader module

…
0030 55
0031 89E5
0033 6A00
0035 E848010000
003a 83C404
003d 89EC
003f 5D
0040 C3
…

0036: ADDR32 TXT

Memory contents

…
2130 55
2131 89E5
2133 6A00
2135 E848220000
213a 83C404
213d 89EC
213f 5D
2140 C3
…

Replace address relative
to the text segment

Address now is absolute
Text segment at 0x2100

=0x0148 =0x2248

test.o test process

Operating Systems 09: Memory management 23

Address linking and relocation (4)
• Relocation information in the linker module (object file)

• allows the linking of modules into arbitrary programs
• Relocation information in the loader module

• allows loading of the program at arbitrary locations in memory
• absolute addresses are generated only at load time

• Dynamic linking with compiler support
• Program does not use absolute addresses and can thus always be

loaded to arbitrary memory locations
• position independent code (PIC)

• Dynamic linking with MMU support
• Mapping from “logical” to “physical“ addresses

• Relocation at link time is sufficient
(except for shared libraries)

Operating Systems 09: Memory management 24

Segmentation
• Hardware support: map logical to physical addresses

ROM

RAM
0

0xfffff
0x100000

0x1fffff

0x450000

0x54ffff
+0x450000

+0x100000

The segment in the logical address space can be located at an
arbitrary position in the physical address space.
The OS controls where a segment is located in physical memory.

Operating Systems 09: Memory management 25

Segmentation (2)
• Using a translation table (per process)

02 00 4a02

00 4fffffe0 f000

…

00

01

02

ffe1 3a02

+

+

<

Trap:
access violation

Segment table
start addr. length

logical address

yes

segment table base address register

Operating Systems 09: Memory management 26

Segmentation (3)
• Hardware component translating addresses: MMU

(Memory Management Unit)
• Protects against overstepping the segment limits

• MMU checks read/write/execute permissions
• Trap indicates a violation

(a process attempts to access non permitted memory location)
• Programs and operating system are protected against each other

• Process switching by exchanging the segment base
• each process has its own translation table

• Easier swapping
• after swapping a process into an arbitrary memory location, only the

translation table has to be modified
• Shared segments are possible

• Instruction (text) segments
• Data segments (shared memory)

Operating Systems 09: Memory management 27

Segmentation (4)
Problems...

• Fragmentation of main memory due to frequent swapping or starting/
termination of processes

• This results in small unusable gaps: external fragmentation

• Compacting helps
• Segments are moved to close gaps
• Segment table is modified accordingly
• Time consuming…

• Long running I/O operations required for swapping
• Not all parts of a segment are used with the same frequency

Operating Systems 09: Memory management 28

Compaction
• Moving of segments

• Creates fewer but larger gaps
• Reduced fragmentation
• Operation with large overhead

• Specific overhead depends on the size of the segments that are moved

P3

300 kB

400 kB

P2

300 kB

P1
0

400 kB

700 kB

1000 kB

1400 kB

1800 kB

2100 kB

Initial configuration 700 kB memory moved

P1

P2

P3

1000 kB

0

400 kB

700 kB

1100 kB

2100 kB

300 kB memory moved

P1

P2

P3

1000 kB

0

400 kB

1400 kB

1800 kB

2100 kB

Operating Systems 09: Memory management 29

Paging
• Logical address space is split into pages of identical size

• Pages can be located at arbitrary positions in the physical memory
address space

• Solves the fragmentation problem
• no compaction necessary
• Simplified memory allocation and swapping

RAM

logical address space physical address space

pages
page

frames

ROM

Operating Systems 09: Memory management 30

MMU with page table
• A table is used to translate page addresses into page frame addresses

12a00002

ffe0 fxxx

00000

+
Page table
start address

logical
address

page table base address register

…

00001

00002

00003

00004

12affe0f
physical
address

Operating Systems 09: Memory management 31

MMU with page table (2)
• Page-based addressing creates internal fragmentation

• The last page is often not used completely
• Page size

• small pages reduce internal fragmentation, but increase the size of
the page table (and vice versa)

• common page sizes: 512 bytes — 8192 bytes
• Page tables are large and have to be kept in main memory
• Large number of implicit page accesses required to map an address
• Only one “segment” per context

• Makes the “appropriate” use of memory difficult to control
• e.g. ensuring push/pop only on “stack”, execution only of “text”

➛ Combine paging with segmentation

Operating Systems 09: Memory management 32

Segmentation and page addressing
12a0002

00

+

logical
addresssegment table base

address register

01

02

12affe0fphysical
address

<

Trap: access violation

yes

0005

…

Segment table
page tbl. ptr. page number

1

+
ffe0 fxxx

Page table
start address

…

00000

00001

00002

00003

00004

Operating Systems 09: Memory management 33

Segmentation and page addressing (2)
• This requires even more implicit memory accesses
• Large tables in main memory

• Mixup of the different concepts

• Still swapping of complete segments

➛ Multi-level page addressing with paging

Operating Systems 09: Memory management 34

Paging
• Swapping complete segments is not necessary

• Single pages can now be swapped (paged)

• Hardware support
• If the presence bit is set,

nothing changes
• If the presence bit is cleared,

a trap is invoked (page fault)
• The trap handler (part of the OS) can

now initiate the loading of the page
from background storage
(this requires hardware support in the CPU)

Xffe0 fxxx

00000

00001

00002

Page table
start address presence bit

Operating Systems 09: Memory management 35

Multi-level page addressing
• Example: two-level page addressing

• Presence bit also for all entries in higher levels
• This enables the swapping of page tables
• Tables can be created at access time (on demand) – saves memory!

• However: even more implicit memory accesses required

…

base
register

12a02logical
address 3 03

…
…

…
…

…
…

3
02

Operating Systems 09: Memory management 36

Translation lookaside buffer (TLB)
• Fast cache which is consulted before a (possible) lookup in the page table:

ffe0 fxxx

Page table
start address

…

00000

00001

00002

00003

00004

page table base
address register

12a00002+
logical
address

12affe0f
physical
address

00002 ffe0f

00028 bfff4

00004 a0123

00032 12345

TLB

Operating Systems 09: Memory management 37

Translation lookaside buffer (2)
• Fast access to page address mapping, the information is contained in

the (fully associative) TLB memory
• no implicit page accesses required

• TLB has to be flushed when the OS switches context
• If a page not contained in the TLB is accessed, the related access

information is entered into the TLB
• An old TLB entry has to be selected to be replaced by the new one

• TLB sizes:
• Intel Core i7: 512 entries, page size 4 kB
• UltraSPARC T2: data TLB = 128, Code TLB = 64, page size 8 kB
• Larger TLBs are currently not implementable due to timing and cost

considerations

Operating Systems 09: Memory management 38

Inverted page tables
• For large logical address spaces (e.g. 64 bit addresses):

• Classical page tables are very large or
• Large number of address translation levels
• Page tables are often only sparsely populated

➛ Inverted Page Tables

12a00002

logical addressPID
05

12affe0f
physical
address05 00002

…

page
frame
table

search

Operating Systems 09: Memory management 39

Inverted page tables (2)
• Advantages

• required little memory space to store address mappings
• table can always be kept in main memory

• Disadvantages
• sharing of page frames is difficult to implement
• process-local data structures are used for pages that are swapped

out
• Lookups in the page table have large overhead

• Use of associative memories and hash functions

• Despite these disadvantages, many 64 bit processors use this approach
to address translation:

• Sun UltraSparc, IBM PowerPC, intel Itanium (IA-64), (DEC Alpha), ...

Operating Systems 09: Memory management 40

Conclusions
• The OS has to work in close cooperation with the hardware to enable

efficient memory management
• Segmentation and/or page-based addressing
• The implicit indirection of memory accesses allows to arbitrarily move

code and data of running processes under the control of the OS (at page
size granularity)

• Additional strategic decisions have to be taken
• Placement strategy (first fit, best fit, buddy, ...)

• These differ with regard to fragmentation and the required overhead
for allocation and release

• Selection of an appropriate strategy depends on the expected
application profile

• When swapping segments or pages:
• Loading strategy
• Replacement strategy ⇒ more on this in the next lecture

