TDT4186 Example Exam
Spring 2022

Operating Systems / operativsystemer
Solutions

Michael Engel

1. Processes

 These pieces of C code are executed on a Unix system. The missing code pieces (includes, definition of

main) are not shown for brevity. Assume that all fork calls succeed.

Process creation (5 points):

Give the total number of processes resulting from executing the code,
including the process executing this code itself. Explain your solution.

There are 6 processes in total. The initial process (let’s say it has pid 100)
generates one child process (pid 101) using fork in line 3, so we have two
processes (pids 100 and 101) executing the fork system call in line 4.

After fork returns both in pid 100 and 101, we have two additional child
processes (let's assume pids 102 and 103).

Line 5 now checks for the value returned from the first and second fork call.

Only if the first fork returned a value > 0 (i.e. we are in the original process
with pid 100) and the second form returned a value = 0,
the code in lines 6—7 is executed. So we have six processes altogether.

1 // Code 1

N

0

0O N o Uit B W N

)-
1C
1T (p1dl1>0 && pid2=

id t pidl, pid2;

idl = fork():
2_

= fork();

1f (fork())
fork () ;

=0) {

1. Processes

* (Consider the following example program. List all possible outputs this program can produce when
executed on a Unix system. The output consists of strings made up of multiple letters.

Process execution order (5 points):

Two possible outputs:
ABBCC and ABCBC

Here you had to know that the order in which parent
and child process continue to execute after returning
from fork() is not fixed, it can be parent first or child first.

#include <unistd.h>
#include <sys/wait.h>

#define W(x) write(l,

int main() {
W(A) ;
int child = fork();
W(B) ;
if (child)
walt (NULL) ;
W(C) ;
]

#X,

sizeof #x)

2. System calls

System call parameters (5 points)

The system call ssize_t read(int fd, void *buf, size_t count);
reads count bytes from the file with file descriptor fd into the buffer pointed to by buf.

To enable safe and secure operation of the OS, the OS has to check properties of the parameters to the read
system call. Describe which properties of the parameters should be checked before the OS performs the
requested file access.

Assume that buf = NULL and count >= 0. Page faults are allowed to take place after the checks.

Three parameters have to be checked to ensure safe and secure operation:
* fd is a valid file descriptor (>=0) and open (optional: for reading on a file)

* buf has to be a valid pointer in the user address space (without checking, the kernel might write to memory
outsize of the address space of the process executing read)

Common errors:

* stating that fd > 0 (O is a valid fd) or count >=0 (size_t is usually an unsigned int type!), leaving out
parameters to check, checking size of the buffer (not possible!)

4

2. System calls

Unix shell (5 points)

When you enter a command in a Unix shell, this command can either be an internal or an external command.

Can the cd (change directory) command be implemented as an external command and work as expected?
If yes, explain its implementation. If no, explain why not.

Changing directories is implemented using the chdir(2) system call in Unix. So an external "cd" program might look like
this (we omit the includes and argument checks here):

int main(int argc, char **argv) { chdir(argv([l]); }
Each process in Unix has its own current (or working) directory.

After the shell forks, our external "cd" command is started by using a system call from the exec() syscall family. Exec
replaces the memory contents of the shell’s child process with that of "cd” and starts the program, which successfully
changes its own directory.

However, we wanted to change the current directory of the shell. This implies changing the memory contents of the
shell itself (i.e., the variable holding the current path). Since the address spaces of the shell and our external "cd"
command are separate, the shell path cannot be changed by the external command.

3. Synchronization

Synchronization (5 points)

The following three functions of a program run in separate threads each and print some
prime numbers. All three threads are ready to run at the same time.

Use synchronization using the semaphores S1, S2 and S3 and wait/signal operations on the

semaphores to ensure that the program outputs the prime numbers in increasing order (2, 3,
5 7,11, 13).

Insert appropriate wait or signal operations in the code lines indicated with // SYNC and give
the correct initial values for the semaphores. Note that it might not be required to add a wait
or signal operations in all of the places indicated.

One solution is shown on the right (permutations of the semaphores are also valid). With initial
values of all semaphores = 0, only f2 can run, prints 2, signals S1 and then waits for S2.
signal(S1) starts f1, which was waiting for S1 and can now print 3 and 5 and then signal S3.
signal(S3) now starts 3, which prints 7 and 11 and signals S2. This returns execution to f2,
which can then finally print 13.

An alternative valid solution would be to initialize the semaphore not used to start f1 or f3
(here: S2) to 1 and add a wait(S2) to the start of f2 (or, again, permutations of the
semaphores).

Partial credit was given for partially correct orders of the output.
Common errors:
* |Incorrect orders, incorrect initialization of semaphores, wait(S2) forgotten in 2

6

Semaphore S1
Semaphore S2
Semaphore S3

i1 1
ONONO

T10) |

;

wait(S1): // SYNC
printf("3");

// SYNC
printf("5");

signal(S3); // SYNC

T20) |

;

// SYNC
printf("2");
signal (S1);
wait(S2); // SYNC
printf("13");

// SYNC

30 |

wait(S3); // SYNC
printf("7");

// SYNC
printf("11");
signal (S2); // SYNC

3. Synchronization

Semaphore implementation (3 points)

Is it possible to implement concurrency primitive such as mutexes on modern multicore CPUs without the use of
special instructions such as xchg?

In other words, can such concurrency primitives be written purely in C on current multicore processors? Explain your
answer.

This question was intended to test your understanding of the problem implementing concurrency primitives.

Some of you proposed algorithms such as the bakery algorithm. This is in general correct and received full credit when
mentioning that these algorithms are problematic on multicores.

Some of you mentioned cache hierarchies and cache synchronization — fine.

Some of you only mentioned atomicity of instructions. This itself does not help on a multiprocessor — what has to be
atomic is the bus transaction related to an atomic instruction, since code can run really in parallel on a multicore
system.

Some of you mentioned that it is possible in C since the OS provides mutexes — but these also have to be
implemented in some language, so that is ignoring the problem (and, in turn, received no credit).

3. Synchronization

Deterministic process execution (2 points)

Given an integer variable x in a C program, assume that the instruction x++ is executed by two threads of the
program in parallel.

If you run the program multiple times, explain why in some cases the variable is sometimes only incremented
by one instead of by two.

The C instruction x++ on an integer variable x is commonly translated into three separate parts, e.q.:

1 tmp = read memory (&X) ;
2 tmp = tmp + 1;
3 Wwrite memory (&x, tmp);

In machine language, tmp would refer to a CPU register. Thus, x++ is not an atomic instruction. If this code is
executed in parallel in multiple threads, a context switch can occur somewhere between line 1 and 3, which
would result in the copies of tmp in both threads having the same value. Thus, the same value of (x+1) is
written back twice. This effect is called a race condition.

Partial credit for partially correct answers (e.g. incorrect or missing indication when the context is switched).

4. Deadlocks

4.1 (5 points)

Initially, all three mutexes are initialized as “not locked”.
Also assume that the threads can execute Iin any arbitrary
Interleavings.

Can there be a problem when executing this
multithreaded code? If yes, show an interleaving resulting
in the problem. If no, explain why not.

Yes, there is a deadlock. Consider the following interleaving:

thread 1:
wait(L1);
thread 2:
wait(L3);
thread 3:
wait(L2);

Now there will be a circular wait condition:

0O NOoO O WD —

N0 T 1 T N0 T S e O S e . e e
N - O ©O 00O NO O ~WLWODN - O OO

Semaphore L1=1, L2=1, L3=1;

// Thread 1:

walit (L1) ;
walt (L2) ;
// critical
signal (L2);
signal (L1);

// Thread 2:

walt (L3);
walt (L1);
// critical
signal (L1);
signal (L3);

// Thread 3:

walt (L2) ;
walt (L3) ;
// critical
signal (L3);
signal (L2);

section requiring L1 and L2 locked.

section requiring L3 and L1 locked.

section requiring LZ and L3 locked.

thread 1 waiting for L2 (held by thr. 3) — thr. 2 waiting for L1 (held by thr. 1) — thr. 3 waiting for L3 (held by thr. 2).

4. Deadlocks

4.2 (5 points)

If there is a problem, propose a fix (Note that each critical section requires two different locks, you cannot
change this assumption)

Obviously, there is a problem :-).

Solution:

Acquire the locks in order the order of L1, L2, L3.

10

5. Memory allocation

Buddy algorithm (5 points)

A system has a memory of size 32 MB (1 MB = 220 bytes). Four processes A, B, C and D request memory
one after the other (in order A, B, C, D).

Use the buddy algorithm to perform dynamic memory allocation for the processes.
The following allocations take place in the given order. The first allocation for process A is already given in
the table below (you can copy and paste the table into the answer test field):

1. Process A allocates 6 MB
2. Process B allocates 9 MB
3. Process C allocates 1 MB
4. Process D allocates 6 MB

Hint: If a memory allocation cannot be fulfilled, please indicate this appropriately next to the respective
allocation.

11

Common mistakes:

* alignment ignored

* Incorrect size

* ignored subsequent allocatios

* ignored that size of block =2 MB

5. Memory allocation

Buddy algorithm (3 points)

(already given) AlLALALA
2. Process & allocates 9 MBS o246 81012 [14 [16 [18 [20 [22 |24 |26 |28 [30
Aligned block needed with size A AIAA X X X[X| X[X|X|X
of a power of 2 >9 MB =16 MB
3. Process C allocates 1 MB
Aligned block needed with size 0O 1 2 4 |6 |8 (10 12 [14 16 |18 (20 22 24 26 |28 (30
of a power of 2 > 1MB =2 MB AlAIAI A X X | X| X! X X| X X X
(blocks 10, 12, 14 also correct)
4. Process D allocates 6 MB

0O 1 2 14 |6 |8 (10 12 (14 16 18 (20 22 24 26 |28 (30
Allocation not possible, 6 MB are
free (10-14), but not correctly aligned AJATATATX XXX XXX XX

12

5. Memory allocation

LRU (5 points)

In a system with page addressing and the page replacement strategy LRU (least recently used), a process performs

accesses to memory pages in the given reference sequence:

Reference sequence: 5, 3, 5, 1, 2, 5, 4, 6, 1

The operating system provides three page frames to the process.

Give the number of the virtual memory page
that is paged into the respective page frame at
each given request in the reference sequence.
You can use the fields under "control state" to
note the age of the respective page (you can
copy and paste the table into the answer test
field).

Control states were not required.
Partial credit for partially correct solutions.

Common errors:
* Mistakes when determining the age or using LRU

Reference 112051 4ale6!1
sequence

Main memory |frame 1 55 5|55 |1

frame 2 32| 2|2|6 |6

frame 3 111|144 |4

Control states |[frame 1 11210112 |0

frame 2 21011201

frame 3 O/1]2 |01 2

13

Segment table:

6. Virtual memory Index Start address | Length
00 0x0000 OOEO |0x21 20FF
Segmented memory (4 points) 01 0xB542 0000 |0x01 0000
Determine the corresponding physical addresses for memory 02 0x0515 0000 0x20 0000
accesses to logical addresses (hexadecimal):
03 0x0006 0000 Ox00 FFFF
OxXOOOOBEEF
Ox1CEBOODA
using memory segmentation. O0x1C 0x0001 0000 OxFF FFFF

In the logical address, the most significant 8 bits of the address indicate the position in the segment table. Indicate in your
answer if one of the memory accesses would result in an access violation.

Most significant 8 bits of the address indicate the position in the segment table:

Ox00 OOBEEF: segment index Ox00 = start Ox0000 OOEO, length Ox21 20FF
segment offset = Ox00 BEEF < length 0x21 20FF => valid
physical address = start address + offset = Ox0000 OOEO® + OxO00 BEEF

Ox0000 BFCF

Ox1C EBOODA: segment index Ox1C = start Ox0001 0000, length OXFF FFFF
segment offset = OXEB OODA < length OxFF FFFF => valid
physical address = start address + offset = Ox0001 0000 + OxEB OODA

Ox0OEC_OODA

Partial credit for partially correct translations, no credit for result without explanation.
Common errors:

 Hexadecimal addition is hard (and some converted the numbers to decimal...)
14

6. Virtual memory

Paging (4 points)

In a system with page addressing (paging), the page frame table is
in the state given below. The length of an address is 16 bits.

The 12 least significant bits of an address are the offset inside the
page (page size = 4096 bytes).

Determine the physical addresses for the logical addresses Ox6AB1 and OxF1B7.

Ox6AB1: page number = four most significant bits = 0x06, offset (12 LSBs) = OxAB1
page 0x6 has physical start address 0x4000
0x4000 + offset OxAB1 = 0x4AB1

OxF1B7: page number = four most significant bits = OxOF, offset (12 LSBs) = 0x1B7
page OxF has physical start address 0x5000
0x5000 + offset Ox1B7 = 0x51B7

Partial credit for partially correct translations with accompanying explanation.
Common errors:
* incorrect lookup in the page table, adding the start address to the whole 16 bit virtual addr.

15

Page table:

Page
number

Start
address

OxFO00

0x3000

0x3000

0x1000

0xC000

0x2000

0x4000

N O[O~ WIN —~ O

OxB0O0O

OxF

0x5000

6. Virtual memory

Logical address structure (2 points)

In a system where virtual address 0x722B2104 is mapped to physical address Ox16AB2104, what is the largest
page size that could be used for this mapping? Explain your calculation.

The largest page size that could be used is the set of low order bits that are identical between the two addresses.
0xB2104 is the common suffix of both addresses, so the largest page size is at least 220 (because each hex digit
can be represented by exactly 4 bits).

We then look to the first non-identical digit.

Digit 2 (from the virtual address) has a binary representation of 0010 while digit A (from the physical address) is
1010. These have 3 bits in common, so the largest page size that could be used is 223 for this pair of virtual and
physical addresses.

Partial credit for correct explanation, but incorrect result.
No credit for result 220 (or any other result) or result without explanation.

Common errors:
* This was a(n intentionally) hard question. The common additional 3 bits were often not considered.

16

Process|Arrival time/ CPU time|l/O time
7. Scheduling P1 120 40 20
P2 |30 20 10
FCFS Scheduling (5 points) P3 [0 30 40

An operating system has three cyclically executing processes P1, P2 and P3 (i.e. the process starts from its beginning
after it ran through a CPU- and |/O-burst each).

The processes arrive (are ready to execute) at the time points given in the table below. All times are given in milliseconds
(ms).

Enter the execution order and process state of the processes P1, P2 and P3 in the given Gantt diagram for a first-come,
first-served (FCFS) scheduler.

P3 is the only process ready at t=0, so it
runs until the start of its I/0 burst at 1=30.

P1 arrived at t=20 and is the only process ; ; ; ;

ready at t=30, so it executes for 40 time units P1 — - T O Legende:

and then starts I/0. At t=70, P2 and P3 are ? § ? ?] Running

ready, P2 arrived earlier and is scheduled (etc.)| P2 | | | | I - ! 3 Ready

P3 e[efele TN - -T-[- 1 _

Common errors: = = = = Blocked
' I L O L B I”t[fﬂS]

* Processes not considered periodic 0 100 200

 Wrong counts

* Assuming preemption

17

7. Scheduling

Scheduling algorithms and waiting time (5 points)

The following set of processes is given along with their arrival time and the

length of their CPU-bursts:

For the FCFS scheduling algorithm, the Gantt diagram giving the sequence

and timing of process execution looks as follows:

P1 P2 P3 P4 P5 P6

P7

P8

0 4 16 18 24 34 37

45

50

Process -Arrival Burst time
time (ms) (ms)
P1 0 4
P2 2 12
P3 5 2
P4 6 6
P5 8 10
P6 12 3
P7 15 8
P8 22 5

Draw the respective Gantt diagrams and calculate the average waiting time for the following scheduling

algorithms:

1. Non-preemptive SJF (shortest job first)

2. Preemptive RR (round robin) with a time slice (quantum) of 6 ms

3. Preemptive SRTF (shortest remaining time first)

18

7. Scheduling

Scheduling algorithms and waiting time (5 points)

1. Non-preemptive SJF (shortest job first)

P1

P2 P3 | P6 P4 P8 P7

P5

4 16 18 21 27 32 40

Average waiting time = (0+2+11+15+32+6+17+5)/8 = 88/8 =11ms

50

2. Preemptive RR (round robin) with a time slice (quantum) of 6 ms

Process -Arrival Burst time
time (ms) (ms)
P1 0 4
P2 2 12
P3 5 2
P4 6 6
P5 8 10
P6 12 3
P7 15 8
P8 22 5

P1 P2 | P3 P4 P5 P2 | P6 P7 |P8| P5 | P7
0 4 10 12 18 24 30 33 39 44 48 50
Average waiting time = (0+16+5+6+30+18+27+17)/8 = 119/8 =14.875ms
3. Preemptive SRTF (shortest remaining time first)
Answer:
PL | P2 | P3| P4 | P6 P7 P8 P5 P2
0 4 5 7 13 16 24 29 39 50

19

Average waiting time = (0+36+0+1+21+1+1+2)/8 = 62/8 =7.75ms

Common mistakes:

* errors in calculating the sum
or the average... (partial credit
when only making small
mistakes)

* using an incorrect definition
of waiting time

8. I/0, Disk Scheduling and File systems

Unix file 1/0 (3 points)

Consider the following function read_input().

void read input(int fd, char **buf) {
*buf = malloc(1024) ;
memset (*buf, O, 1024);
lseek(fd, 3, SEEK SET);
read(fd, *buf, 1023);

;

Assume that the file which the descriptor fd refers to contains the following sequence of characters:
abcd

Which string does the buffer buf contain after the read() call returns? Assume that no errors occur.

d — Iseek seeks to absolute byte position 3 in the file. Positions are counted starting at offset 0.

The file only contains the four given characters, so a read attempt of 1023 characters only returns the d, which is stored in
buf[0].

Common errors:
* Off-by-one, e.g. assuming the file starts at index 1 instead of 0

20

8. I/0, Disk Scheduling and File systems

Unix file 1/0 (3 points)

Consider the following function read_input().

void read 1nput(int fd, char **pbuf) {
*buf = malloc(1024) ;
memset (*buf, 0, 1024);
lseek(fd, 3, SEEK SET);
read(fd, *buf, 1023);

;

What is the purpose of the memset() call in the code above?

It clears the buffer pointed to by buf, ensure that the string read ends with a null/zero byte ('\O', 0x00).
Common errors:

* stating that the string needs to end with a zero (this could also mean the ASCII character '0' = 0x30 and
IS Imprecise).

» Stating that the buffer at *buf is cleared (this is the content of the buffer, not the address)

21

8. I/0, Disk Scheduling and File systems

Disk scheduling (3 points)

A disk has 16 tracks. The related I/O scheduler receives a number of read requests for a certain set of tracks.

Initially, the read requests in set L1 are already known to the I/O scheduler. The requests in set L2 arrive after
the I/O scheduler has processed one requests; the requests in L3 arrive after the I/0O scheduler has
processed three additional requests (so overall four).

Initially, the disk read/write head is located at track O.
L1={4,7,11,3} L2 ={2, 13, 1} L3 = {15, 5, 6}
Give the order of tracks that are read for an I/O scheduler that uses the First In First Out (FIFO) strategy:

FIFO is the most simple order, so the resultis: 4, 7,11, 3,2,13,1,15,5,6
Common mistakes:

* thinking too complex, this is simply FIFO...

22

file blocks

8. I/0, Disk Scheduling and File systems

Inode-based file systems (4 points)

A file system uses inodes as shown in the picture -

direct, single and double indirect inodes (but no triple single indirect -
indirect ones).

Calculate the maximum possible file size in this file double indirect -\
system under the given assumptions:

inode

The block size is 1024 bytes
A block number requires four (4) bytes of storage

Describe all steps of your calculation and give the value for the maximum possible file size.

File size = (Block size) * (Number of blocks) = (Block size) * (10+ (number of indir. block entries) + (humber of indir. block entries)?)
= 1024 Bytes * (10 + 256 + 256"256) // 256 entries per indirect block = 1024 bytes block size / 4 bytes block number
= 67.381.248 Bytes
= 65.802 kB
= ca. 64.3 MB (all forms of the result were valid, calculation was required!). Partial credit for simple calculation errors.

Common mistakes: only 9 instead of 10 direct blocks, assuming double and triple indirect blocks instead of single and double.

23

