
Operating Systems
Example solutions for Theoretical Exercise 6

Michael Engel

Operating Systems – Solution TE 6 2

6.1 Rate Monotonic Schedulability
The following tasks are given:

The priorities of the tasks are assigned statically before the actual
execution of the task set. RMS assigns higher priority to tasks with
smaller periods. Tasks are preempted by the higher priority tasks.

It is an optimal scheduling algorithm amongst fixed-priority algorithms;
if a task set cannot be scheduled with RM, it cannot be scheduled by
any fixed-priority algorithm.

Department of Computer Science – IDI TDT4186 Operating Systems

https://folk.ntnu.no/michaeng/tdt4186_22/

michael.engel@ntnu.no

Theoretical exercises

Spring 2022

Theoretical Exercises 6

Realtime Scheduling, I/O Scheduling and File Systems

Please submit solutions on Blackboard by Monday, 14.3.2022 12:00h

6.1 Rate Monotonic Schedulability

The following tasks are given:

t1 t2 t3

Ci 1 3 2

Ti 3 8 9

a. Test if the given task set is schedulable under RM, using the sufficient test.

b. Test if the given task set is schedulable under RM, using the necessary test.

c. Assume that the first job of each task arrives at time 0. Construct the schedule for the interval [0, 20] and

illustrate it graphically. In case they exist, identify deadline misses.

6.2 Periodic Scheduling

A processor is supposed to execute the following set of tasks described by their execution times C, relative deadlines

D and periods T :

t1 t2 t3

Ci 2 2 4

Di 5 4 8

Ti 6 8 12

a. Execute the sufficient schedulability test for EDF and calculate the result. What statement regarding schedula-

bility can be made based on your result?

b. If there is a feasible schedule for the given task set, construct it graphically. Let the phase Fi = 0 8 i.

6.3 SSTF Disk Scheduling

Explain why SSTF scheduling tends to favor middle cylinders over the innermost and outermost cylinders.

Operating Systems – Solution TE 6 3

6.1 Rate Monotonic Schedulability
The following tasks are given:

a. Test if the given task set is schedulable under RM, using the sufficient test

The sufficient schedulability test is given by:

The term U is the processor utilization factor (the fraction of the processor time
spent on executing task set). n is the number of tasks.
For our case: fails!
The above condition is not necessary, so we don’t know if the task set is
schedulable with RM or not. Accordingly, we can try to figure this out using the
test in subtask b.

U =
n

∑
i=1

Ci

Di
≤ n(21/n − 1)

1/3 + 3/8 + 2/9 = 0.93 ≰ 3(21/3 − 1) = 0.78

Department of Computer Science – IDI TDT4186 Operating Systems

https://folk.ntnu.no/michaeng/tdt4186_22/

michael.engel@ntnu.no

Theoretical exercises

Spring 2022

Theoretical Exercises 6

Realtime Scheduling, I/O Scheduling and File Systems

Please submit solutions on Blackboard by Monday, 14.3.2022 12:00h

6.1 Rate Monotonic Schedulability

The following tasks are given:

t1 t2 t3

Ci 1 3 2

Ti 3 8 9

a. Test if the given task set is schedulable under RM, using the sufficient test.

b. Test if the given task set is schedulable under RM, using the necessary test.

c. Assume that the first job of each task arrives at time 0. Construct the schedule for the interval [0, 20] and

illustrate it graphically. In case they exist, identify deadline misses.

6.2 Periodic Scheduling

A processor is supposed to execute the following set of tasks described by their execution times C, relative deadlines

D and periods T :

t1 t2 t3

Ci 2 2 4

Di 5 4 8

Ti 6 8 12

a. Execute the sufficient schedulability test for EDF and calculate the result. What statement regarding schedula-

bility can be made based on your result?

b. If there is a feasible schedule for the given task set, construct it graphically. Let the phase Fi = 0 8 i.

6.3 SSTF Disk Scheduling

Explain why SSTF scheduling tends to favor middle cylinders over the innermost and outermost cylinders.

Operating Systems – Solution TE 6 4

6.1 Rate Monotonic Schedulability
The following tasks are given:

b. Test if the given task set is schedulable under RM, using the necessary test.

We have to guarantee that all the tasks can be scheduled, in any possible
instance. In particular, if a task can be scheduled in its critical instances, then
the schedulability guarantee condition holds (a critical instance of a task occurs
whenever the task is released simultaneously with all higher priority tasks).
In the following, we perform the iterative schedulability algorithm on slide 6-54
(for the details of the algorithm, please have a look at page 99, Buttazzo’s
book).
The tasks are first ordered by their priorities: τ1, τ2 and τ3. (here the tasks are
already ordered.)

Department of Computer Science – IDI TDT4186 Operating Systems

https://folk.ntnu.no/michaeng/tdt4186_22/

michael.engel@ntnu.no

Theoretical exercises

Spring 2022

Theoretical Exercises 6

Realtime Scheduling, I/O Scheduling and File Systems

Please submit solutions on Blackboard by Monday, 14.3.2022 12:00h

6.1 Rate Monotonic Schedulability

The following tasks are given:

t1 t2 t3

Ci 1 3 2

Ti 3 8 9

a. Test if the given task set is schedulable under RM, using the sufficient test.

b. Test if the given task set is schedulable under RM, using the necessary test.

c. Assume that the first job of each task arrives at time 0. Construct the schedule for the interval [0, 20] and

illustrate it graphically. In case they exist, identify deadline misses.

6.2 Periodic Scheduling

A processor is supposed to execute the following set of tasks described by their execution times C, relative deadlines

D and periods T :

t1 t2 t3

Ci 2 2 4

Di 5 4 8

Ti 6 8 12

a. Execute the sufficient schedulability test for EDF and calculate the result. What statement regarding schedula-

bility can be made based on your result?

b. If there is a feasible schedule for the given task set, construct it graphically. Let the phase Fi = 0 8 i.

6.3 SSTF Disk Scheduling

Explain why SSTF scheduling tends to favor middle cylinders over the innermost and outermost cylinders.

Operating Systems – Solution TE 6 5

6.1 Rate Monotonic Schedulability
The following tasks are given:

b. Test if the given task set is schedulable under RM, using the necessary test

In our case:

The necessary and sufficient test succeeds. This means that the task set is
schedulable with RM.

Department of Computer Science – IDI TDT4186 Operating Systems

https://folk.ntnu.no/michaeng/tdt4186_22/

michael.engel@ntnu.no

Theoretical exercises

Spring 2022

Theoretical Exercises 6

Realtime Scheduling, I/O Scheduling and File Systems

Please submit solutions on Blackboard by Monday, 14.3.2022 12:00h

6.1 Rate Monotonic Schedulability

The following tasks are given:

t1 t2 t3

Ci 1 3 2

Ti 3 8 9

a. Test if the given task set is schedulable under RM, using the sufficient test.

b. Test if the given task set is schedulable under RM, using the necessary test.

c. Assume that the first job of each task arrives at time 0. Construct the schedule for the interval [0, 20] and

illustrate it graphically. In case they exist, identify deadline misses.

6.2 Periodic Scheduling

A processor is supposed to execute the following set of tasks described by their execution times C, relative deadlines

D and periods T :

t1 t2 t3

Ci 2 2 4

Di 5 4 8

Ti 6 8 12

a. Execute the sufficient schedulability test for EDF and calculate the result. What statement regarding schedula-

bility can be made based on your result?

b. If there is a feasible schedule for the given task set, construct it graphically. Let the phase Fi = 0 8 i.

6.3 SSTF Disk Scheduling

Explain why SSTF scheduling tends to favor middle cylinders over the innermost and outermost cylinders.

(b) We have to guarantee that all the tasks can be scheduled, in any possible instance. In particular, if
a task can be scheduled in its critical instances, then the schedulability guarantee condition holds
(a critical instance of a task occurs whenever the task is released simultaneously with all higher
priority tasks). In the following, we perform the iterative schedulability algorithm on slide 6-54 (for
the details of the algorithm, please have a look at page 99, Buttazzo’s book).
The tasks are first ordered by their priorities: ·1, ·2 and ·3. (In this case the tasks are already
ordered.)

·3:
R0

3 = C3 = 2 I0
3 = Á2

3Ë1 + Á2
8Ë3 = 1 + 3 = 4 4 + 2 ”= 2

R1
3 = 4 + 2 = 6 I1

3 = Á6
3Ë1 + Á6

8Ë3 = 2 + 3 = 5 5 + 2 ”= 6
R2

3 = 5 + 2 = 7 I2
3 = Á7

3Ë1 + Á7
8Ë3 = 3 + 3 = 6 6 + 2 ”= 7

R3
3 = 6 + 2 = 8 I3

3 = Á8
3Ë1 + Á8

8Ë3 = 3 + 3 = 6 6 + 2 = 8 . . . OK
(since R3 = 8 Æ T3 = 9)

·2:
R0

2 = C2 = 3 I0
2 = Á3

3Ë1 = 1 1 + 3 ”= 3
R1

2 = 1 + 3 = 4 I1
2 = Á4

3Ë1 = 2 2 + 3 ”= 4
R2

2 = 2 + 3 = 5 I2
2 = Á5

3Ë1 = 2 2 + 3 = 5 . . . OK (since R2 = 5 Æ T2 = 8)
·1:

R0
1 = C1 = 1 I0

1 = 0 0 + 1 = 1 . . . OK (since R1 = 1 Æ T1 = 3)
The necessary and su�cient test succeeds. This means that the task set is schedulable with RM.

(c) The schedule is represented graphically in Figure 2. (There are no deadline misses.)

Figure 2: RM schedule of Task 2.

Task 3: Scheduling with Polling Server

·1 ·2 ·3
Ci 2 2 2
Di 6 8 16
Ti 6 8 16

In addition to the above periodic tasks, we have an aperiodic job Ja with computation time Ca = 1,
and relative deadline Da. The scheduling policy is RM. The aperiodic job is scheduled through a Polling
Server (PS).

(a) Let the period and computing time of the polling server be Ts = 25 and Cs = 1, respectively.
Compute the aperiodic guarantee available to Ja, i.e., compute the minimum relative deadline of
Ja which is guaranteed not to be missed.

(b) Using the su�cient test of RM, test if the polling server of (a) is schedulable along with the periodic
task-set?

3

Operating Systems – Solution TE 6 6

6.1 Rate Monotonic Schedulability
The following tasks are given:

c. Assume that the first job of each task arrives at time 0. Construct
the schedule for the interval [0, 20] and illustrate it graphically. In
case they exist, identify deadline misses.
There are no deadline misses (as shown in the previous subtask)

Department of Computer Science – IDI TDT4186 Operating Systems

https://folk.ntnu.no/michaeng/tdt4186_22/

michael.engel@ntnu.no

Theoretical exercises

Spring 2022

Theoretical Exercises 6

Realtime Scheduling, I/O Scheduling and File Systems

Please submit solutions on Blackboard by Monday, 14.3.2022 12:00h

6.1 Rate Monotonic Schedulability

The following tasks are given:

t1 t2 t3

Ci 1 3 2

Ti 3 8 9

a. Test if the given task set is schedulable under RM, using the sufficient test.

b. Test if the given task set is schedulable under RM, using the necessary test.

c. Assume that the first job of each task arrives at time 0. Construct the schedule for the interval [0, 20] and

illustrate it graphically. In case they exist, identify deadline misses.

6.2 Periodic Scheduling

A processor is supposed to execute the following set of tasks described by their execution times C, relative deadlines

D and periods T :

t1 t2 t3

Ci 2 2 4

Di 5 4 8

Ti 6 8 12

a. Execute the sufficient schedulability test for EDF and calculate the result. What statement regarding schedula-

bility can be made based on your result?

b. If there is a feasible schedule for the given task set, construct it graphically. Let the phase Fi = 0 8 i.

6.3 SSTF Disk Scheduling

Explain why SSTF scheduling tends to favor middle cylinders over the innermost and outermost cylinders.

(b) We have to guarantee that all the tasks can be scheduled, in any possible instance. In particular, if
a task can be scheduled in its critical instances, then the schedulability guarantee condition holds
(a critical instance of a task occurs whenever the task is released simultaneously with all higher
priority tasks). In the following, we perform the iterative schedulability algorithm on slide 6-54 (for
the details of the algorithm, please have a look at page 99, Buttazzo’s book).
The tasks are first ordered by their priorities: ·1, ·2 and ·3. (In this case the tasks are already
ordered.)

·3:
R0

3 = C3 = 2 I0
3 = Á2

3Ë1 + Á2
8Ë3 = 1 + 3 = 4 4 + 2 ”= 2

R1
3 = 4 + 2 = 6 I1

3 = Á6
3Ë1 + Á6

8Ë3 = 2 + 3 = 5 5 + 2 ”= 6
R2

3 = 5 + 2 = 7 I2
3 = Á7

3Ë1 + Á7
8Ë3 = 3 + 3 = 6 6 + 2 ”= 7

R3
3 = 6 + 2 = 8 I3

3 = Á8
3Ë1 + Á8

8Ë3 = 3 + 3 = 6 6 + 2 = 8 . . . OK
(since R3 = 8 Æ T3 = 9)

·2:
R0

2 = C2 = 3 I0
2 = Á3

3Ë1 = 1 1 + 3 ”= 3
R1

2 = 1 + 3 = 4 I1
2 = Á4

3Ë1 = 2 2 + 3 ”= 4
R2

2 = 2 + 3 = 5 I2
2 = Á5

3Ë1 = 2 2 + 3 = 5 . . . OK (since R2 = 5 Æ T2 = 8)
·1:

R0
1 = C1 = 1 I0

1 = 0 0 + 1 = 1 . . . OK (since R1 = 1 Æ T1 = 3)
The necessary and su�cient test succeeds. This means that the task set is schedulable with RM.

(c) The schedule is represented graphically in Figure 2. (There are no deadline misses.)

Figure 2: RM schedule of Task 2.

Task 3: Scheduling with Polling Server

·1 ·2 ·3
Ci 2 2 2
Di 6 8 16
Ti 6 8 16

In addition to the above periodic tasks, we have an aperiodic job Ja with computation time Ca = 1,
and relative deadline Da. The scheduling policy is RM. The aperiodic job is scheduled through a Polling
Server (PS).

(a) Let the period and computing time of the polling server be Ts = 25 and Cs = 1, respectively.
Compute the aperiodic guarantee available to Ja, i.e., compute the minimum relative deadline of
Ja which is guaranteed not to be missed.

(b) Using the su�cient test of RM, test if the polling server of (a) is schedulable along with the periodic
task-set?

3

Operating Systems – Solution TE 6 7

6.2 Periodic Scheduling
A processor is supposed to execute the following set of tasks
described by their execution times C, relative deadlines D and periods
T:

a. Execute the sufficient schedulability test for EDF and calculate the
result. What statement regarding schedulability can be made based
on your result?

Using we compute failed

Since this test is sufficient, but not necessary. Hence, the
task set might be schedulable (as we see below).

n

∑
i=1

Ci

Di
≤ 1 2/5 + 2/4 + 4/8 = 1.4 ≰ 1

Di < Ti

Department of Computer Science – IDI TDT4186 Operating Systems

https://folk.ntnu.no/michaeng/tdt4186_22/

michael.engel@ntnu.no

Theoretical exercises

Spring 2022

Theoretical Exercises 6

Realtime Scheduling, I/O Scheduling and File Systems

Please submit solutions on Blackboard by Monday, 14.3.2022 12:00h

6.1 Rate Monotonic Schedulability

The following tasks are given:

t1 t2 t3

Ci 1 3 2

Ti 3 8 9

a. Test if the given task set is schedulable under RM, using the sufficient test.

b. Test if the given task set is schedulable under RM, using the necessary test.

c. Assume that the first job of each task arrives at time 0. Construct the schedule for the interval [0, 20] and

illustrate it graphically. In case they exist, identify deadline misses.

6.2 Periodic Scheduling

A processor is supposed to execute the following set of tasks described by their execution times C, relative deadlines

D and periods T :

t1 t2 t3

Ci 2 2 4

Di 5 4 8

Ti 6 8 12

a. Execute the sufficient schedulability test for EDF and calculate the result. What statement regarding schedula-

bility can be made based on your result?

b. If there is a feasible schedule for the given task set, construct it graphically. Let the phase Fi = 0 8 i.

6.3 SSTF Disk Scheduling

Explain why SSTF scheduling tends to favor middle cylinders over the innermost and outermost cylinders.

Operating Systems – Solution TE 6 8

6.2 Periodic Scheduling
A processor is supposed to execute the following set of tasks described by their
execution times C, relative deadlines D and periods T:

b. If there is a feasible schedule for the given task set, construct it graphically. Let the
phase Φi = 0 ∀ i.

A necessary and sufficient test for EDF is to use the demand bound analysis, which
is not covered in the course. Interested reader may look at the following reference
S. Baruah, A. Mok, L. Rosier. Preemptive Scheduling Hard-Real-Time Sporadic Tasks
on One Processor. Proceedings of the Real-Time Systems Symposium, 182-190, 1990.

Department of Computer Science – IDI TDT4186 Operating Systems

https://folk.ntnu.no/michaeng/tdt4186_22/

michael.engel@ntnu.no

Theoretical exercises

Spring 2022

Theoretical Exercises 6

Realtime Scheduling, I/O Scheduling and File Systems

Please submit solutions on Blackboard by Monday, 14.3.2022 12:00h

6.1 Rate Monotonic Schedulability

The following tasks are given:

t1 t2 t3

Ci 1 3 2

Ti 3 8 9

a. Test if the given task set is schedulable under RM, using the sufficient test.

b. Test if the given task set is schedulable under RM, using the necessary test.

c. Assume that the first job of each task arrives at time 0. Construct the schedule for the interval [0, 20] and

illustrate it graphically. In case they exist, identify deadline misses.

6.2 Periodic Scheduling

A processor is supposed to execute the following set of tasks described by their execution times C, relative deadlines

D and periods T :

t1 t2 t3

Ci 2 2 4

Di 5 4 8

Ti 6 8 12

a. Execute the sufficient schedulability test for EDF and calculate the result. What statement regarding schedula-

bility can be made based on your result?

b. If there is a feasible schedule for the given task set, construct it graphically. Let the phase Fi = 0 8 i.

6.3 SSTF Disk Scheduling

Explain why SSTF scheduling tends to favor middle cylinders over the innermost and outermost cylinders.

(DM) The tasks are ordered with respect to their priorities (earlier deadline - higher priority): ·2,
·1 and ·3.
Let’s first check for the lowest priority task ·3:

R0
3 = C3 = 4 I0

3 = Á4
6Ë2 + Á4

8Ë2 = 2 + 2 = 4 4 + 4 ”= 4
R1

3 = 4 + 4 = 8 I1
3 = Á8

6Ë2 + Á8
8Ë2 = 4 + 2 = 6 6 + 4 ”= 8 failed!

Since R2
3 = 4 + 6 = 10 ”Æ D3 = 8, the tasks are not schedulable with DM!

(b) Let us check schedulability under EDF. Using
nÿ

i=1

Ci

Di
Æ 1

we compute 2/5 + 2/4 + 4/8 = 1.4 ”Æ 1 failed!.
Since Di Æ Ti this test is su�cient, but not necessary. Hence, the task set might be schedulable
(as we see below).

(c) Despite the fact that the su�cient schedulability test for EDF has failed, there is a feasible schedule
under EDF. It is shown in Figure 6.

0 1 2 3 4 5 6 8 10 12 14 16 18 20 22 24

T1

T2

T3

Figure 6: EDF schedule

A necessary and su�cient test for EDF is to use the demand bound analysis, which is not covered in the
course. Interested reader may look at the following reference
S. Baruah, A. Mok, L. Rosier. Preemptive Scheduling Hard-Real-Time Sporadic Tasks on One Processor.
Proceedings of the Real-Time Systems Symposium, 182-190, 1990.

8

Operating Systems – Solution TE 6 9

6.3 SSTF Disk Scheduling
Explain why SSTF scheduling tends to favor middle cylinders over
the innermost and outermost cylinders.

The center of the disk is the location having the smallest average
distance to all other tracks.
Thus after servicing the first request, the algorithm would be more
likely to be closer to the center track than to any other particular
track, and hence would more often go there first.
Once at a particular track, SSTF tends to keep the head near this
track; thus, this scheduling strategy would compound the initial
tendency to go to the center.

Operating Systems – Solution TE 6 10

6.4 FAT Scheduling
Requests are not usually uniformly distributed. For example, a
cylinder containing the file system FAT or inodes can be expected to
be accessed more frequently than a cylinder that only contains files.
Suppose that you know that 50 percent of the requests are for a
small, fixed number of cylinders.

a. Would any of the scheduling algorithms discussed in this chapter
be particularly good for this case? Explain your answer.

SSTF would take greatest advantage of the situation. FCFS could
cause unnecessary head movement if references to the “high-
demand” cylinders were interspersed with references to cylinders far
away.

Operating Systems – Solution TE 6 11

Requests are not usually uniformly distributed. For example, a
cylinder containing the file system FAT or inodes can be expected to
be accessed more frequently than a cylinder that only contains files.
Suppose that you know that 50 percent of the requests are for a
small, fixed number of cylinders.

b. Propose a disk scheduling algorithm that gives even better
performance by taking advantage of this “hot spot” on the disk.

One suggestion: SSTF with some modification to prevent starvation.
Second suggestion: (A variation of SCAN) The head is allowed to
make one “zigzag” over the high-volume tracks. An upper limit on the
number of consecutive requests (on the same track) that can be
serviced before moving on would prevent starvation.

6.4 FAT Scheduling

Operating Systems – Solution TE 6 12

Requests are not usually uniformly distributed. For example, a cylinder
containing the file system FAT or inodes can be expected to be accessed
more frequently than a cylinder that only contains files. Suppose that you
know that 50 percent of the requests are for a small, fixed number of
cylinders.

c. Filesystems typically find data blocks via an indirection table, such as
a FAT in DOS or inodes in UNIX. Describe one or more ways to take
advantage of this indirection to improve the disk performance.

One idea: the indirection table is relatively small, so it could be cached in
RAM and only written back when the system is shut down or rebooted.
However, the integrity of the system is in danger here, since at least a
part of the file metadata is not synchronized to disk. In case of a sudden
power failure or kernel panic, all information since the last
synchronization could be irrecoverably lost.

6.4 FAT Scheduling

Operating Systems – Solution TE 6 13

6.5 Disk scheduling
a. Assume a magnetic disk with 8 tracks. After each second read request
(starting from L1), the I/O scheduler receives additional read requests
which are grouped (requested) together (L2 and finally L3).
Initially, the read/write head of the disk is at track 0.
Give the I/O scheduling order that would be performed according to the
SSTF (shortest seek time first) algorithm:
L1 = {2,4,3,1}, L2 = {5,6}, L3 = {0,7}
Access order:
1. L1 received and ordered SSTF: 1, 2, 3, 4
2. Read track 1 and track 2
3. L2 received, added to remaining, SSTF: 3, 4, 5, 6
4. Read tracks 3 and 4
5. L3 received, added to remaining, SSTF: 5, 6, 7, 0
=> Order: {1, 2, 3, 4, 5, 6, 7, 0}

Operating Systems – Solution TE 6 14

6.5 Disk scheduling
b. Assume a magnetic disk with 8 tracks. After each third read request (starting
from L1), the I/O scheduler receives additional read requests which are grouped
(requested) together (L2 and finally L3).
Initially, the read/write head of the disk is at track 0.
Give the I/O scheduling order that would be performed according to the
elevator algorithm:
L1 = {1,4,7,2}, L2 = {4,6,0}, L3 = {5,2}
Access order:
1. L1 received and ordered elevator: 1, 2, 4, 7
2. Read track 1, track 2 and track 4
3. L2 received, added to remaining, elevator: 6, 7, 0
4. Read tracks 4 and 4? ➛ ambiguous, 1 or 2 reads?
➛ 4. Read tracks 4, 6 and 7!
5. L3 received, added to remaining, elevator: 5, 2, 0
=> Order: {1, 2, 4, 6, 7, 5, 2, 0}

that "4" was a typo, should have read "3"

Operating Systems – Solution TE 6 15

6.5 Disk scheduling
b. Assume a magnetic disk with 8 tracks. After each third read request (starting
from L1), the I/O scheduler receives additional read requests which are grouped
(requested) together (L2 and finally L3).
Initially, the read/write head of the disk is at track 0.
Give the I/O scheduling order that would be performed according to the
elevator algorithm:
L1 = {1,4,7,2}, L2 = {3,6,0}, L3 = {5,2}

Access order:
1. L1 received and ordered elevator: 1, 2, 4, 7
2. Read track 1 and track 2
3. L2 received, added to remaining, elevator: 3, 4, 6, 7, 0
4. Read tracks 3 and 4
5. L3 received, added to remaining, elevator: 5, 6, 7, 2, 0
=> Order: {1, 2, 3, 4, 5, 6, 7, 2, 0}

with typo corrected…

Operating Systems – Solution TE 6 16

6.6 FAT file system
This question is related to a task you would need to perform if you were a
computer security expert doing a forensic analysis of a disk.
Given a hexadecimal dump of blocks on the disk and a description of the
block contents, you need to figure out the meaning of that data.

Department of Computer Science – IDI TDT4186 Operating Systems

5.2 FAT file system (4 points)

This question is related to a task you would need to perform if you were a computer security expert doing a forensic
analysis of a disk.

Given a hexadecimal dump of blocks on the disk and a description of the block contents, you need to figure out the

meaning of that data.

For an MS-DOS FAT16 floppy disk, you obtain the following hexadecimal dump of a directory block (note: addresses

are in decimal):

address data bytes ASCII representation

0009728 49 4f 20 20 20 20 20 20 53 59 53 27 00 00 00 00 IO .SYS

0009744 00 00 00 00 00 00 08 5d 62 1b 1d 00 16 9f 00 00

0009760 4d 53 44 4f 53 20 20 20 53 59 53 27 00 00 00 00 MSDOS .SYS

0009776 00 00 00 00 00 00 08 5d 62 1b 6d 00 38 95 00 00

0009792 43 4f 4d 4d 41 4e 44 20 43 4f 4d 20 00 00 00 00 COMMAND .COM

0009808 00 00 00 00 00 00 07 5d 62 1b b8 00 39 dd 00 00

0009824 44 42 4c 53 50 41 43 45 42 49 4e 27 00 00 00 00 DBLSPACE.BIN

0009840 00 00 00 00 00 00 08 5d 62 1b 27 01 f6 fc 00 00

0009856 4d 53 44 4f 53 20 20 20 20 20 20 28 00 00 00 00 MSDOS

0009872 00 00 00 00 00 00 1a 88 99 1c 00 00 00 00 00 00

0009888 46 44 49 53 4b 20 20 20 45 58 45 20 00 00 00 00 FDISK .EXE

0009904 00 00 00 00 00 00 36 59 62 1b 02 00 17 73 00 00

The structure of a FAT16 directory entry is as follows (all numbers are stored in little endian byte order :

Bytes Content

0–10 File name (8 bytes) with extension (3 bytes)

11 Attribute - a bitvector. Bit 0: read only. Bit 1: hidden.

Bit 2: system file. Bit 3: volume label. Bit 4: subdirectory.

Bit 5: archive. Bits 6-7: unused.

12–21 Reserved

22–23 Time (5/6/5 bits, for hour/minutes/doubleseconds)

24–25 Date (7/4/5 bits, for year-since-1980/month/day)

26–27 Starting cluster (0 for an empty file)

28-31 File size in bytes

For each directory entry, find out:

a. The name of the entry

b. The type of the entry including the set of file attributes

c. The starting cluster number

d. The file size in bytes

Operating Systems – Solution TE 6 17

6.6 FAT file system
For each directory entry, find out:
a. The name of the entry

Department of Computer Science – IDI TDT4186 Operating Systems

5.2 FAT file system (4 points)

This question is related to a task you would need to perform if you were a computer security expert doing a forensic
analysis of a disk.

Given a hexadecimal dump of blocks on the disk and a description of the block contents, you need to figure out the

meaning of that data.

For an MS-DOS FAT16 floppy disk, you obtain the following hexadecimal dump of a directory block (note: addresses

are in decimal):

address data bytes ASCII representation

0009728 49 4f 20 20 20 20 20 20 53 59 53 27 00 00 00 00 IO .SYS

0009744 00 00 00 00 00 00 08 5d 62 1b 1d 00 16 9f 00 00

0009760 4d 53 44 4f 53 20 20 20 53 59 53 27 00 00 00 00 MSDOS .SYS

0009776 00 00 00 00 00 00 08 5d 62 1b 6d 00 38 95 00 00

0009792 43 4f 4d 4d 41 4e 44 20 43 4f 4d 20 00 00 00 00 COMMAND .COM

0009808 00 00 00 00 00 00 07 5d 62 1b b8 00 39 dd 00 00

0009824 44 42 4c 53 50 41 43 45 42 49 4e 27 00 00 00 00 DBLSPACE.BIN

0009840 00 00 00 00 00 00 08 5d 62 1b 27 01 f6 fc 00 00

0009856 4d 53 44 4f 53 20 20 20 20 20 20 28 00 00 00 00 MSDOS

0009872 00 00 00 00 00 00 1a 88 99 1c 00 00 00 00 00 00

0009888 46 44 49 53 4b 20 20 20 45 58 45 20 00 00 00 00 FDISK .EXE

0009904 00 00 00 00 00 00 36 59 62 1b 02 00 17 73 00 00

The structure of a FAT16 directory entry is as follows (all numbers are stored in little endian byte order :

Bytes Content

0–10 File name (8 bytes) with extension (3 bytes)

11 Attribute - a bitvector. Bit 0: read only. Bit 1: hidden.

Bit 2: system file. Bit 3: volume label. Bit 4: subdirectory.

Bit 5: archive. Bits 6-7: unused.

12–21 Reserved

22–23 Time (5/6/5 bits, for hour/minutes/doubleseconds)

24–25 Date (7/4/5 bits, for year-since-1980/month/day)

26–27 Starting cluster (0 for an empty file)

28-31 File size in bytes

For each directory entry, find out:

a. The name of the entry

b. The type of the entry including the set of file attributes

c. The starting cluster number

d. The file size in bytes

Department of Computer Science – IDI TDT4186 Operating Systems

5.2 FAT file system (4 points)

This question is related to a task you would need to perform if you were a computer security expert doing a forensic
analysis of a disk.

Given a hexadecimal dump of blocks on the disk and a description of the block contents, you need to figure out the

meaning of that data.

For an MS-DOS FAT16 floppy disk, you obtain the following hexadecimal dump of a directory block (note: addresses

are in decimal):

address data bytes ASCII representation

0009728 49 4f 20 20 20 20 20 20 53 59 53 27 00 00 00 00 IO .SYS

0009744 00 00 00 00 00 00 08 5d 62 1b 1d 00 16 9f 00 00

0009760 4d 53 44 4f 53 20 20 20 53 59 53 27 00 00 00 00 MSDOS .SYS

0009776 00 00 00 00 00 00 08 5d 62 1b 6d 00 38 95 00 00

0009792 43 4f 4d 4d 41 4e 44 20 43 4f 4d 20 00 00 00 00 COMMAND .COM

0009808 00 00 00 00 00 00 07 5d 62 1b b8 00 39 dd 00 00

0009824 44 42 4c 53 50 41 43 45 42 49 4e 27 00 00 00 00 DBLSPACE.BIN

0009840 00 00 00 00 00 00 08 5d 62 1b 27 01 f6 fc 00 00

0009856 4d 53 44 4f 53 20 20 20 20 20 20 28 00 00 00 00 MSDOS

0009872 00 00 00 00 00 00 1a 88 99 1c 00 00 00 00 00 00

0009888 46 44 49 53 4b 20 20 20 45 58 45 20 00 00 00 00 FDISK .EXE

0009904 00 00 00 00 00 00 36 59 62 1b 02 00 17 73 00 00

The structure of a FAT16 directory entry is as follows (all numbers are stored in little endian byte order :

Bytes Content

0–10 File name (8 bytes) with extension (3 bytes)

11 Attribute - a bitvector. Bit 0: read only. Bit 1: hidden.

Bit 2: system file. Bit 3: volume label. Bit 4: subdirectory.

Bit 5: archive. Bits 6-7: unused.

12–21 Reserved

22–23 Time (5/6/5 bits, for hour/minutes/doubleseconds)

24–25 Date (7/4/5 bits, for year-since-1980/month/day)

26–27 Starting cluster (0 for an empty file)

28-31 File size in bytes

For each directory entry, find out:

a. The name of the entry

b. The type of the entry including the set of file attributes

c. The starting cluster number

d. The file size in bytes

That was simple enough! Note that the
"." in the name is not stored on disk, but
the first 8 bytes are filled with 0x20 if that part is < 8 characters!

file name extension

These dots
are a lie :)
Not stored
on disk

Operating Systems – Solution TE 6 18

6.6 FAT file system
For each directory entry, find out:
b. Type of the entry + file attributes
0x20 = 0010 0000 = archive
0x27 = 0010 0111 = archive, read only, system file, hidden
0x28 = 0010 1000 = archive, volume label (so "MSDOS" is not a file)

Department of Computer Science – IDI TDT4186 Operating Systems

5.2 FAT file system (4 points)

This question is related to a task you would need to perform if you were a computer security expert doing a forensic
analysis of a disk.

Given a hexadecimal dump of blocks on the disk and a description of the block contents, you need to figure out the

meaning of that data.

For an MS-DOS FAT16 floppy disk, you obtain the following hexadecimal dump of a directory block (note: addresses

are in decimal):

address data bytes ASCII representation

0009728 49 4f 20 20 20 20 20 20 53 59 53 27 00 00 00 00 IO .SYS

0009744 00 00 00 00 00 00 08 5d 62 1b 1d 00 16 9f 00 00

0009760 4d 53 44 4f 53 20 20 20 53 59 53 27 00 00 00 00 MSDOS .SYS

0009776 00 00 00 00 00 00 08 5d 62 1b 6d 00 38 95 00 00

0009792 43 4f 4d 4d 41 4e 44 20 43 4f 4d 20 00 00 00 00 COMMAND .COM

0009808 00 00 00 00 00 00 07 5d 62 1b b8 00 39 dd 00 00

0009824 44 42 4c 53 50 41 43 45 42 49 4e 27 00 00 00 00 DBLSPACE.BIN

0009840 00 00 00 00 00 00 08 5d 62 1b 27 01 f6 fc 00 00

0009856 4d 53 44 4f 53 20 20 20 20 20 20 28 00 00 00 00 MSDOS

0009872 00 00 00 00 00 00 1a 88 99 1c 00 00 00 00 00 00

0009888 46 44 49 53 4b 20 20 20 45 58 45 20 00 00 00 00 FDISK .EXE

0009904 00 00 00 00 00 00 36 59 62 1b 02 00 17 73 00 00

The structure of a FAT16 directory entry is as follows (all numbers are stored in little endian byte order :

Bytes Content

0–10 File name (8 bytes) with extension (3 bytes)

11 Attribute - a bitvector. Bit 0: read only. Bit 1: hidden.

Bit 2: system file. Bit 3: volume label. Bit 4: subdirectory.

Bit 5: archive. Bits 6-7: unused.

12–21 Reserved

22–23 Time (5/6/5 bits, for hour/minutes/doubleseconds)

24–25 Date (7/4/5 bits, for year-since-1980/month/day)

26–27 Starting cluster (0 for an empty file)

28-31 File size in bytes

For each directory entry, find out:

a. The name of the entry

b. The type of the entry including the set of file attributes

c. The starting cluster number

d. The file size in bytes

Department of Computer Science – IDI TDT4186 Operating Systems

5.2 FAT file system (4 points)

This question is related to a task you would need to perform if you were a computer security expert doing a forensic
analysis of a disk.

Given a hexadecimal dump of blocks on the disk and a description of the block contents, you need to figure out the

meaning of that data.

For an MS-DOS FAT16 floppy disk, you obtain the following hexadecimal dump of a directory block (note: addresses

are in decimal):

address data bytes ASCII representation

0009728 49 4f 20 20 20 20 20 20 53 59 53 27 00 00 00 00 IO .SYS

0009744 00 00 00 00 00 00 08 5d 62 1b 1d 00 16 9f 00 00

0009760 4d 53 44 4f 53 20 20 20 53 59 53 27 00 00 00 00 MSDOS .SYS

0009776 00 00 00 00 00 00 08 5d 62 1b 6d 00 38 95 00 00

0009792 43 4f 4d 4d 41 4e 44 20 43 4f 4d 20 00 00 00 00 COMMAND .COM

0009808 00 00 00 00 00 00 07 5d 62 1b b8 00 39 dd 00 00

0009824 44 42 4c 53 50 41 43 45 42 49 4e 27 00 00 00 00 DBLSPACE.BIN

0009840 00 00 00 00 00 00 08 5d 62 1b 27 01 f6 fc 00 00

0009856 4d 53 44 4f 53 20 20 20 20 20 20 28 00 00 00 00 MSDOS

0009872 00 00 00 00 00 00 1a 88 99 1c 00 00 00 00 00 00

0009888 46 44 49 53 4b 20 20 20 45 58 45 20 00 00 00 00 FDISK .EXE

0009904 00 00 00 00 00 00 36 59 62 1b 02 00 17 73 00 00

The structure of a FAT16 directory entry is as follows (all numbers are stored in little endian byte order :

Bytes Content

0–10 File name (8 bytes) with extension (3 bytes)

11 Attribute - a bitvector. Bit 0: read only. Bit 1: hidden.

Bit 2: system file. Bit 3: volume label. Bit 4: subdirectory.

Bit 5: archive. Bits 6-7: unused.

12–21 Reserved

22–23 Time (5/6/5 bits, for hour/minutes/doubleseconds)

24–25 Date (7/4/5 bits, for year-since-1980/month/day)

26–27 Starting cluster (0 for an empty file)

28-31 File size in bytes

For each directory entry, find out:

a. The name of the entry

b. The type of the entry including the set of file attributes

c. The starting cluster number

d. The file size in bytes

attribute byte

The disk
itself is
called
"MSDOS"

Operating Systems – Solution TE 6 19

6.6 FAT file system
For each directory entry, find out:
c. The starting cluster number
Find bytes 26-27 (decimal)
Little endian byte order!
Cluster size on FAT12 = 512 – 4096 bytes (usually 512 on floppy disks)

Department of Computer Science – IDI TDT4186 Operating Systems

5.2 FAT file system (4 points)

This question is related to a task you would need to perform if you were a computer security expert doing a forensic
analysis of a disk.

Given a hexadecimal dump of blocks on the disk and a description of the block contents, you need to figure out the

meaning of that data.

For an MS-DOS FAT16 floppy disk, you obtain the following hexadecimal dump of a directory block (note: addresses

are in decimal):

address data bytes ASCII representation

0009728 49 4f 20 20 20 20 20 20 53 59 53 27 00 00 00 00 IO .SYS

0009744 00 00 00 00 00 00 08 5d 62 1b 1d 00 16 9f 00 00

0009760 4d 53 44 4f 53 20 20 20 53 59 53 27 00 00 00 00 MSDOS .SYS

0009776 00 00 00 00 00 00 08 5d 62 1b 6d 00 38 95 00 00

0009792 43 4f 4d 4d 41 4e 44 20 43 4f 4d 20 00 00 00 00 COMMAND .COM

0009808 00 00 00 00 00 00 07 5d 62 1b b8 00 39 dd 00 00

0009824 44 42 4c 53 50 41 43 45 42 49 4e 27 00 00 00 00 DBLSPACE.BIN

0009840 00 00 00 00 00 00 08 5d 62 1b 27 01 f6 fc 00 00

0009856 4d 53 44 4f 53 20 20 20 20 20 20 28 00 00 00 00 MSDOS

0009872 00 00 00 00 00 00 1a 88 99 1c 00 00 00 00 00 00

0009888 46 44 49 53 4b 20 20 20 45 58 45 20 00 00 00 00 FDISK .EXE

0009904 00 00 00 00 00 00 36 59 62 1b 02 00 17 73 00 00

The structure of a FAT16 directory entry is as follows (all numbers are stored in little endian byte order :

Bytes Content

0–10 File name (8 bytes) with extension (3 bytes)

11 Attribute - a bitvector. Bit 0: read only. Bit 1: hidden.

Bit 2: system file. Bit 3: volume label. Bit 4: subdirectory.

Bit 5: archive. Bits 6-7: unused.

12–21 Reserved

22–23 Time (5/6/5 bits, for hour/minutes/doubleseconds)

24–25 Date (7/4/5 bits, for year-since-1980/month/day)

26–27 Starting cluster (0 for an empty file)

28-31 File size in bytes

For each directory entry, find out:

a. The name of the entry

b. The type of the entry including the set of file attributes

c. The starting cluster number

d. The file size in bytes

Department of Computer Science – IDI TDT4186 Operating Systems

5.2 FAT file system (4 points)

This question is related to a task you would need to perform if you were a computer security expert doing a forensic
analysis of a disk.

Given a hexadecimal dump of blocks on the disk and a description of the block contents, you need to figure out the

meaning of that data.

For an MS-DOS FAT16 floppy disk, you obtain the following hexadecimal dump of a directory block (note: addresses

are in decimal):

address data bytes ASCII representation

0009728 49 4f 20 20 20 20 20 20 53 59 53 27 00 00 00 00 IO .SYS

0009744 00 00 00 00 00 00 08 5d 62 1b 1d 00 16 9f 00 00

0009760 4d 53 44 4f 53 20 20 20 53 59 53 27 00 00 00 00 MSDOS .SYS

0009776 00 00 00 00 00 00 08 5d 62 1b 6d 00 38 95 00 00

0009792 43 4f 4d 4d 41 4e 44 20 43 4f 4d 20 00 00 00 00 COMMAND .COM

0009808 00 00 00 00 00 00 07 5d 62 1b b8 00 39 dd 00 00

0009824 44 42 4c 53 50 41 43 45 42 49 4e 27 00 00 00 00 DBLSPACE.BIN

0009840 00 00 00 00 00 00 08 5d 62 1b 27 01 f6 fc 00 00

0009856 4d 53 44 4f 53 20 20 20 20 20 20 28 00 00 00 00 MSDOS

0009872 00 00 00 00 00 00 1a 88 99 1c 00 00 00 00 00 00

0009888 46 44 49 53 4b 20 20 20 45 58 45 20 00 00 00 00 FDISK .EXE

0009904 00 00 00 00 00 00 36 59 62 1b 02 00 17 73 00 00

The structure of a FAT16 directory entry is as follows (all numbers are stored in little endian byte order :

Bytes Content

0–10 File name (8 bytes) with extension (3 bytes)

11 Attribute - a bitvector. Bit 0: read only. Bit 1: hidden.

Bit 2: system file. Bit 3: volume label. Bit 4: subdirectory.

Bit 5: archive. Bits 6-7: unused.

12–21 Reserved

22–23 Time (5/6/5 bits, for hour/minutes/doubleseconds)

24–25 Date (7/4/5 bits, for year-since-1980/month/day)

26–27 Starting cluster (0 for an empty file)

28-31 File size in bytes

For each directory entry, find out:

a. The name of the entry

b. The type of the entry including the set of file attributes

c. The starting cluster number

d. The file size in bytes

starting cluster

0x001d = dec. 29

0x006d = dec. 109

0x00b8 = dec. 184

0x0127 = dec. 295

0x0000 – not a file

0x0002 = dec. 2

Operating Systems – Solution TE 6 20

6.6 FAT file system
For each directory entry, find out:
d. The file size in bytes
Find bytes 28-31 (decimal)
Little endian byte order!
File size is given in bytes

Department of Computer Science – IDI TDT4186 Operating Systems

5.2 FAT file system (4 points)

This question is related to a task you would need to perform if you were a computer security expert doing a forensic
analysis of a disk.

Given a hexadecimal dump of blocks on the disk and a description of the block contents, you need to figure out the

meaning of that data.

For an MS-DOS FAT16 floppy disk, you obtain the following hexadecimal dump of a directory block (note: addresses

are in decimal):

address data bytes ASCII representation

0009728 49 4f 20 20 20 20 20 20 53 59 53 27 00 00 00 00 IO .SYS

0009744 00 00 00 00 00 00 08 5d 62 1b 1d 00 16 9f 00 00

0009760 4d 53 44 4f 53 20 20 20 53 59 53 27 00 00 00 00 MSDOS .SYS

0009776 00 00 00 00 00 00 08 5d 62 1b 6d 00 38 95 00 00

0009792 43 4f 4d 4d 41 4e 44 20 43 4f 4d 20 00 00 00 00 COMMAND .COM

0009808 00 00 00 00 00 00 07 5d 62 1b b8 00 39 dd 00 00

0009824 44 42 4c 53 50 41 43 45 42 49 4e 27 00 00 00 00 DBLSPACE.BIN

0009840 00 00 00 00 00 00 08 5d 62 1b 27 01 f6 fc 00 00

0009856 4d 53 44 4f 53 20 20 20 20 20 20 28 00 00 00 00 MSDOS

0009872 00 00 00 00 00 00 1a 88 99 1c 00 00 00 00 00 00

0009888 46 44 49 53 4b 20 20 20 45 58 45 20 00 00 00 00 FDISK .EXE

0009904 00 00 00 00 00 00 36 59 62 1b 02 00 17 73 00 00

The structure of a FAT16 directory entry is as follows (all numbers are stored in little endian byte order :

Bytes Content

0–10 File name (8 bytes) with extension (3 bytes)

11 Attribute - a bitvector. Bit 0: read only. Bit 1: hidden.

Bit 2: system file. Bit 3: volume label. Bit 4: subdirectory.

Bit 5: archive. Bits 6-7: unused.

12–21 Reserved

22–23 Time (5/6/5 bits, for hour/minutes/doubleseconds)

24–25 Date (7/4/5 bits, for year-since-1980/month/day)

26–27 Starting cluster (0 for an empty file)

28-31 File size in bytes

For each directory entry, find out:

a. The name of the entry

b. The type of the entry including the set of file attributes

c. The starting cluster number

d. The file size in bytes

Department of Computer Science – IDI TDT4186 Operating Systems

5.2 FAT file system (4 points)

This question is related to a task you would need to perform if you were a computer security expert doing a forensic
analysis of a disk.

Given a hexadecimal dump of blocks on the disk and a description of the block contents, you need to figure out the

meaning of that data.

For an MS-DOS FAT16 floppy disk, you obtain the following hexadecimal dump of a directory block (note: addresses

are in decimal):

address data bytes ASCII representation

0009728 49 4f 20 20 20 20 20 20 53 59 53 27 00 00 00 00 IO .SYS

0009744 00 00 00 00 00 00 08 5d 62 1b 1d 00 16 9f 00 00

0009760 4d 53 44 4f 53 20 20 20 53 59 53 27 00 00 00 00 MSDOS .SYS

0009776 00 00 00 00 00 00 08 5d 62 1b 6d 00 38 95 00 00

0009792 43 4f 4d 4d 41 4e 44 20 43 4f 4d 20 00 00 00 00 COMMAND .COM

0009808 00 00 00 00 00 00 07 5d 62 1b b8 00 39 dd 00 00

0009824 44 42 4c 53 50 41 43 45 42 49 4e 27 00 00 00 00 DBLSPACE.BIN

0009840 00 00 00 00 00 00 08 5d 62 1b 27 01 f6 fc 00 00

0009856 4d 53 44 4f 53 20 20 20 20 20 20 28 00 00 00 00 MSDOS

0009872 00 00 00 00 00 00 1a 88 99 1c 00 00 00 00 00 00

0009888 46 44 49 53 4b 20 20 20 45 58 45 20 00 00 00 00 FDISK .EXE

0009904 00 00 00 00 00 00 36 59 62 1b 02 00 17 73 00 00

The structure of a FAT16 directory entry is as follows (all numbers are stored in little endian byte order :

Bytes Content

0–10 File name (8 bytes) with extension (3 bytes)

11 Attribute - a bitvector. Bit 0: read only. Bit 1: hidden.

Bit 2: system file. Bit 3: volume label. Bit 4: subdirectory.

Bit 5: archive. Bits 6-7: unused.

12–21 Reserved

22–23 Time (5/6/5 bits, for hour/minutes/doubleseconds)

24–25 Date (7/4/5 bits, for year-since-1980/month/day)

26–27 Starting cluster (0 for an empty file)

28-31 File size in bytes

For each directory entry, find out:

a. The name of the entry

b. The type of the entry including the set of file attributes

c. The starting cluster number

d. The file size in bytes

file size

0x9f16 = dec. 40726

0x9538 = dec. 38200

0xdd39 = dec. 56633

0xfcf6 = dec. 64758

0x0000 – not a file

0x7317 = dec. 29463

