B NTNU | sioncindrecnoivay

Operating Systems

Example solutions for Theoretical Exercise 4

Michael Engel

4.1 Replacement strategies

Perform and visualize (as shown in lecture 10) the access
sequence with the replacement strategies FIFO, Optimal and LRU
once with a memory with a capacity of 4 pages and once with 5
pages. Calculate the “hit rate” (accesses which did not result in a
replacement operation) for all scenarios.

Request sequence: 1,3,5,4,2,4,3,2,1,0,5,3,5,0,4,3,5,4,3,2,1,3,4,5

Norwegian University of . .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS — Solution TE 4

4.1 Replacement strategies

FIFO:
Requests: 1 3 54243 210535043543 21345
rage 1: [1] [T BN 2[2 221223 [3[3[3]3[3[3]3[3[3]3 &}
Page 2: 3[3(3[3[BI3 Ml x]1[1|l44]4]4]4]4a]4]4]4
Page 3: 5[5]5]5[5][5@ofojofo]olo[ojo[oB2][2]2]2
Page 4: 414]ala[4]aPB5]5]5]5]5[5]5][5]5 @ 1]1]1
Hitrate: 11/24 = 0.4583333
Missrate: 13/24 = 0.5416666
Requests: 1 3 54243 2105350435432
rage 1: [l 1]2[1]1][1[1[1 [T oo [of@]o[o]o]oo]0
Page 2: 3[3[3[3[3]3]3[3[3[3]3[3[3[3]3[3[3]3
Page 3: 5[5]5]5]5]5][5[5]5[5]5]|5]5]5]5]5]5
Page 4: al4]alala]aala]aa]a]a]a]a]4]4
Page 5: 2[2]2]2[2[2]2]2]2]2]2[2]2]2]2
Hitrate: 15/24 = 0.625
Missrate: 9/24 = 0.375

Norwegian University of . .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS — Solution TE 4

4.1 Replacement strategies

Optimal:

Requests:

Page 1:
Page 2:
Page 3:
Page 4:

Requests:

Page 1:
Page 2:
Page 3:
Page 4:
Page 5:

@ NTNU

135424321053504354321345
1[1]1]1[a]1]1 2@ oJo]ofo]ofofolofo B 1]1]1
313(3]3[8]3[3[3[3[3]3[3[3[3]3]3]3]3][3]3]3]3
sl 2[2[2]2[2Bl5[5]5]5]5[5]5]5[5]5]5]5[5
4l4l4]a]alalala]a]a]a]4]a]a]4a]a]a]4]a]4

Hitrate: 15/24 = 0.625

Missrate: 9/24 = 0.375
135424321053504354321345
1[1]1]1]1][1[1[2]@oJoJofo]o[o]o]oo]o]o]o]o]0
3[3[3[3[3]3]3]3[3[3]3[3[3]3]3[3[B3]3[3]3]3]3
5[5[5]5[5[5]5]5]55]5]5[5][8]5]5]5]5|5[5][5
al4lalalalalalalalala]a]ala]a]a]a]a]a]4
2[2]2]2]2]2]2]2]2]2[2]2]2]2 |2 1]1]1

Hitrate: ~ 17/24 = 0.7083333

Missrate:

Norwegian University of
Science and Technology

7/24 = 0.2916666

Operating Systems — Solution TE 4

4.1 Replacement strategies

Requests: 1 35424321053504354321345
LRU: Page 1: 111 21212021212 3[3[313]3[3[3]3[3[3]3][3
Page 2: 3(3[3[313(3(3[3Ms[5(5(5(5[5]5|5(sHM1(1]1
Page 3: s5(s5(s5(s(sMM1(1{1[1[1 M sl4ala]alalalala]a
Page 4: ala]alalaf@ololofololofo]o[of@l2]2]2
Queue:.l 5] [©] ll
L 3] [5] 14] [2] [2] (B8] [2] o] [of (5] [3] [5] [of (4] [B] [5] [4] [3] [2] [&] [3] [4]
(1] [3] [5] [5] [2] [&] [3] [2] [2] [of [o] [3] [5] [of [&] [3] [5] [&] [3] [2] [2] [3]
1] [3] 3] 5] (51 14 3] [2] o) (o1 1a] (3] [5] [o] [of [of [5] [4] [&] [2] [l

Hitrate: 11/24 = 0.4583333%

Missrate: 13/24 = 0.5416666%

Requests: 1 3542432105350435432134°5
Page 1: ARERRRRERTRERERERARARRERR @ PBRRE
Page 2: 3(3[3[31313]3[3[31313(3[3[3]3[3[3]3[3[3]3]3
Page 3: 5/5(5(s[s{sH@Mololofololofo{ofolofM1(1]1
Page 4: alalalalalaPMs5]s5(5(58]5[5[5]5[5]5][5
Page 5: 2121202121212 2120 alalalalalalalala

.IIII I ll
Queue: Ll 3] [5] [4] [2] [2] [B] [2] o] [of [5] (3] [5] [o] [&] [B] [5] [4] [3] [2] [&] [B] [4]
(1] [3] [5] [5] [2] [&] [3] [2] [2] [o] [o] [3] [5] [o] [2] [B] [5] [&] [B] [2] [1] [3]

L] [3] 3] (5] [5] (e 3] [2] [of [o] [2] [3] (5] [o] [o] [o] [5] [&] [2] [2] [1]

] [[[51 fd] (3] 2] 2 (2] o) O3 3 [2) faf [of (5] 1] [5] [2]

Hitrate: 14/24 = 0.583333%
Missrate: 10/24 = 0.416666%

Norwegian University of . .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS — Solution TE 4

4.2 More replacement strategies

A computer has four page frames. The time of loading, time of last
access, and the R (reference) and M (modified) bits for each page are
as shown below (the times are in clock ticks):

Page | Loaded | Lastref. | R | M
0 126 280 110
1 230 265 0|1
2 140 270 0|0
3 110 285 1 11

Which pages will the algorithms FIFO, LRU and Second Chance
replace? Explain your answer!

FIFO: Page 3 because it is loaded at 110 (First In)
LRU: Page 1 because is referenced at 265 (Least Recently)
2nd ch.: Page 2 because it is loaded at 140 and the reference bit is O.

Norwegian University of . .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS — Solution TE 4 6

4.3 Buddy allocation

The Buddy method for allocating memory to processes shall be used for a memory
with a capacity of 1024 kB. Perform the provided operations and give the
occupancy state of the memory after each operation. Indicate if an allocation
cannot be satisfied.

a. Request 65 kB (A
b. Request 30 kB (B
c. Request 90 kB (C
d. Request 34 kB (D
e. Request 130 kB (E)
f. Release C

g. Release B

h. Request 275 kB (F)
i. Request 145 kB (G)
J. Release D

k. Release A

|. Release G

m. Release E

N S N e’

Norwegian University of . .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS — Solution TE 4 7

4.3 Buddy allocation

a. Request 65 kB (A)
b. Request 30 kB (B)
c. Request 90 kB (C)
d. Request 34 kB (D)
e. Request 130 kB (E)
f. Release C

g. Release B

h. Request 275 kB (F)
i. Request 145 kB (G)
|- Release D

K. Release A

|. Release G

m. Release E

Norwegian University of
Science and Technology

@ NTNU

1024 KB |
65 KB request =>A | A | 128 KB | 256 KB | 512 KB |
30 KB request =>B | A .32|64 KB| 256 KB | 512 KB |
90 KB request =>C | A .32|s4 KB| C | 128 KB | 512 KB |
34 KB request =>D | A .32| D | (o | 128 KB | 512 KB |
130 KB request =>E | A .32| D | C | 128 KB | E 256 KB |
release c 32| D | 128kB | 128 KB E 256 KB
32| D 256 KB E 256 KB
release B 32|32 D 256 KB E 256 KB
64ke| D 256 KB E 256 KB
275 KB reauest =>F | A |e4 KB| D | 256 KB | E | 256 KB |
impossible, no
contiguous 275 kB! | A |64 KB E | 256 KB |
145 KB request => G
release D 64 KB 64 KB E 256 KB
128 KB E 256 KB
release A 128 KB | 128 KB E 256 KB
256 KB E 256 KB
release G 128 KB | 128 KB | 256 KB E 256 KB
512 KB E 256 KB
release E 512 KB 256 KB 256 KB
512 KB 512 KB
1024 KB
Operating Systems — Solution TE 4 8

4.4 Virtual memory

A machine has a physical memory with 232 addressable bytes and a
page size of 8 kB. Each process is allocated a virtual address space
of 4 GB. Page table entries are 32 bits long. Page tables are kept in
pageable memory.

a. Why is one-level paging inadequate for this system?

A one-level page table would imply that the first (and only) level of the
table has space for all page entries.

of pages: 4 GB / 8 kB = 232/ 213 = 232-13 = 219
Each page requires a 32 bit = 4 byte entry in the page table.

Thus, the page table for each process would require:
219 * 4 pytes = 2 MB.

This is quite a waste of memory...

Norwegian University of . .
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS — Solution TE 4 9

4.4 Virtual memory

A machine has a physical memory with 232 addressable bytes and a
page size of 8 kB. Each process is allocated a virtual address space of
4 GB. Page table entries are 32 bits long. Page tables are kept in
pageable memory.

b. Why is two-level paging sufficient?

The page table structure is a tradeoff between the size of the table and
the overhead to look up a page entry in case of a TLB miss.

For 32 bit virtual addresses, level 0 and 1 page directories will have
around 1024 entries or less (see part c), so a page directly will
comfortably fit inside a page of the virtual memory system.

The sv32 page table structure of RISC-V (RV32) uses such a two-level
page table with 4 kB pages and 219=1024 entries for level 0 and 1.

Norwegian University of . .
E NTNU ‘ Sciencégand Technolggy Operatmg SyStemS — Solution TE 4 10

4.4 Virtual memory

A machine has a physical memory with 232 addressable bytes and a

page size of 8 kB. Each process is allocated a virtual address space of

4 GB. Page table entries are 32 bits long. Page tables are kept in
pageable memory.

c. How many bits are needed to reference the outer page table and
how many to reference the inner page table?
Explain your answer showing all appropriate arithmetic.

A two-level page table splits a virtual address into three parts, e.g.:

index in level 1 index in level 2 | offset inside page
31 22 21 13 12 0

The offset is 13 bits (213 = 8192 = 8 kB), so we need to split the
remaining 32-13 = 19 bits into two halves

e.g. 10 bits for a level 1 entry and 9 for a level 2 entry

This would imply a level 1 page table size of 210 * 4 bytes = 4096 b.

A level 2 page table would only use 29 * 4 bytes = 2048 bytes

Norwegian University of . .
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS — Solution TE 4

1

4.5 Paging and memory accesses

Consider the following 2D array (assume sizeof (int)=38):
int X[32][32];

Suppose that a system uses 4 pages of 512 byte page size each.

The X array is stored in row-major order (i.e., X[0] [1] follows
X[0][O] in memory).

Which of the following two code fragments will generate the lower
number of page faults?

Compute the total number of page faults for each code fragment.
Explain your calculation.

Norwegian University of . .
E NTNU ‘ Sciencgand Technolggy Operatmg SyStemS — Solution TE 4 12

4.5 Paging and memory accesses

Consider the following 2D array (assume sizeof (int)=8):
int X[32][32];

Suppose that a system uses 4 pages of 512 byte page size each.
The X array is stored in row-major order (i.e., X[0] [1] follows X[0] [0@] in memory).

Fragment 1:
for (int j=0; j<32; j++)
for (int 1=0; i<32; i++)
X[i1[3]++;

of page faults:

A frame is 64 (=512/8) words

= one row of the X array occupies half of a page (i.e., 32 words)

The entire array fits into 32 x 16/64 = 8 frames

The inner loop of the code steps through consecutive rows of X for a given column.
Thus every other reference to X[i][j] will cause a page fault.

=The total number of page faults will be 32 x 32/2 = 512.

Norwegian University of . .
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS — Solution TE 4 13

4.5 Paging and memory accesses

Consider the following 2D array (assume sizeof (int)=8):
int X[32][32];

Suppose that a system uses 4 pages of 512 byte page size each.
The X array is stored in row-major order (i.e., X[0] [1] follows X[0] [0@] in memory).

Fragment 2:
for (int 1=0; 1<32; i++)
for (int j=0; j<32; j++)
X[i1[3]++;

of page faults:
A frame is 64 (=512/8) words
= one row of the X array occupies half of a page (i.e., 32 words)

The entire array fits into 32 x 16/64 = 8 frames

Fragment 2 will generate fewer page faults since the code has more spatial locality
than Fragment 1.

The inner loop causes only one page fault for every other iteration of the outer loop.
=There will only be 16 page faults.

Norwegian University of . .
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS — Solution TE 4 14

