
Operating Systems
Example solutions for Theoretical Exercise 3

Michael Engel

Operating Systems – Solution TE 3 2

3.1 Deadlocks in real life
We have seen the crossroads example to demonstrate the problem
in the lecture. List three other examples of deadlocks that are not
related to a computer system environment.
• Another traffic example: a one-lane bridge in which a car from

both directions has entered. It can be resolved if one car backs up

• A fun effect on some older PCs
• Problems of an introvert:

"I don't really like to talk to someone before I get comfortable with
them.
I don't get comfortable with someone before I've been talking with
them for a while."

Operating Systems – Solution TE 3 3

3.2 Resource allocation graphs
Suppose that there is a resource deadlock in a system. Give an
example to show that the set of processes deadlocked can include
processes that are not in the circular chain in the corresponding
resource allocation graph.

• This is shown in the example from lecture 7
• Here we have a chain of

processes D, E, G forming
a chain in the resource
graph

• However, process B is also
waiting for one of the deadlocked
resources (T), even though it is
not in a circular dependency

There is a circular waiting
condition between processes

D, E and G!

R A

SC

F

W

D T E

B

U

G

V

Operating Systems – Solution TE 3 4

3.3 Deadlock conditions
Two processes, A and B, each need three records, 1, 2, and 3, in a
database.
If both A and B request the records in the order 1, 2, 3, deadlock is
not possible. However, if B asks for the records in the order 3, 2, 1,
then a deadlock can occur.
With three resources, there are 3! = 6 possible combinations each
process can request resources.
What fraction of all combinations is guaranteed to be deadlock
free?
• Suppose that process A requests the records in the order 1, 2, 3.

If process B also asks for 1 first, one of them will get it and the
other will block.

• This situation is always deadlock free since the winner can now
run to completion without interference.

Operating Systems – Solution TE 3 5

3.3 Deadlock conditions
…What fraction of all combinations is guaranteed to be deadlock
free?
• The other four combinations can be similarly reasoned about and

shown to lead to possible deadlock:
(1) 1 2 3: deadlock free
(2) 1 3 2: deadlock free
(3) 2 1 3: possible deadlock
(4) 2 3 1: possible deadlock
(5) 3 1 2: possible deadlock
(6) 3 2 1: possible deadlock

• So only one third of the cases are guaranteed to be deadlock
free

Operating Systems – Solution TE 3 6

3.4 Banker’s algorithm
Consider a system that uses the banker’s algorithm to avoid
deadlocks. At some time a process P requests a resource R, but is
denied even though R is currently available. Does it mean that if the
system allocated R to P, the system would deadlock?

• No.
• An available resource is denied to a requesting process in a

system using the banker’s algorithm if there is a possibility that
the system may deadlock by granting that request.

• It is certainly possible that the system may not have deadlocked if
that request was granted.

Operating Systems – Solution TE 3 7

3.5 C preprocessor
You want to define a C preprocessor macro to calculate the square of a
given number x as follows:

Explain what is problematic with this macro definition and give an example
of the problematic behavior.
• The C preprocessor performs only syntactic text expansion of macros, it

does not know/understand C syntax or semantics!
• The parameter x is thus replaced by whatever is given as parameter to the

macro invocation, e.g.
SQUARE(1+2)
(which you would expect to be 3*3 = 9) is expanded to
(1+2 * 1+2) = 1+2+2 = 5 (due to arithmetic precedence rules in C)

• There are many more macro pitfalls, see e.g.
https://gcc.gnu.org/onlinedocs/gcc-3.4.6/cpp/Macro-Pitfalls.html for details

#define SQUARE(x) (x * x)

https://gcc.gnu.org/onlinedocs/gcc-3.4.6/cpp/Macro-Pitfalls.html

Operating Systems – Solution TE 3 8

3.6 ELF Segments
You are trying to analyze a binary program using the command readelf
-S prog and obtain the following output (shortened):

Assume that you know that there are only global int variables and each
variable uses four bytes. Can you tell how many global int variables are
declared in the program?
• The size of the segment is 0000000000000010 (hex) = 16 bytes
• Thus, it can hold a maximum of 16/4 = 4 int variables
• However, the alignment requirement is a multiple of 8

• Thus, 3 ints would also take 16 bytes (12 + 4 bytes alignment)
• So we cannot say if there are 3 or 4 int variables declared

• …without further investigation (e.g., using nm)

Section Headers:
 [Nr] Name Type Address Offset
 Size EntSize Flags Link Info Align
 [25] .data PROGBITS 0000000000004000 00003000
 0000000000000010 0000000000000000 WA 0 0 8

Operating Systems – Solution TE 3 9

3.7 ELF Symbols
Consider the following (very simple and useless) C program:

Which ELF segment will the variables foo and bar be located in?
• Both are global uninitialized (in the source code) variables, which

are automatically initialized to 0 by the C runtime. They are thus
not stored in the data segment, but in the bss segment

• This saves space in the executable, since variables with initial
value 0 do not need to be saved in the executable

• A global variable int baz=42; would be stored in data, since its
value has to be set when the program starts

1 int foo;
2 int bar;
3 int main(int argc, char **argv) {
4 int a, b;
5 }

Operating Systems – Solution TE 3 10

3.7 ELF Symbols
Consider the following (very simple and useless) C program:

When running the nm command on the binary compiled from the program,
variables a and b are not shown in the command’s output. Explain why.
• a and b are local variables of the function main. Local variables cannot

have a fixed address in memory (like global variables in data and bss),
since we need a separate copy of the variable in case of a recursive call
to the function the variables are declared in

• Thus, these variables are stored on the stack, which grows (and
shrinks) when entering (leaving) a function

• Yes, you can also call main recursively…

1 int foo;
2 int bar;
3 int main(int argc, char **argv) {
4 int a, b;
5 }

