B NTNU | sioncindrecnoivay

Operating Systems

Example solutions for Theoretical Exercise 3

Michael Engel

3.1 Deadlocks in real life

We have seen the crossroads example to demonstrate the problem
in the lecture. List three other examples of deadlocks that are not
related to a computer system environment.

* Another traffic example: a one-lane bridge in which a car from
both directions has entered. It can be resolved if one car backs up

* A fun effect on some older PCs

* Problems of an introvert:
"l don't really like to talk to someone before | get comfortable with

them.
| don't get comfortable with someone before I've been talking with

them for a while."

Norwegian University of . .
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS — Solution TE 3 2

3.2 Resource allocation graphs

Suppose that there is a resource deadlock in a system. Give an
example to show that the set of processes deadlocked can include
processes that are not in the circular chain in the corresponding
resource allocation graph.

* This is shown in the example from lecture 7

- Here we have a chain of ._> A B
processes D, E, G forming ¢
a chain in the resource
graph c Q G
 However, process B is also T
waiting for one of the deadlocked F
resources (T), even though it is ¢ There s a circular waiting
not in a circular dependency . 2ETIE

Norwegian University of . .
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS — Solution TE 3 3

3.3 Deadlock conditions

Two processes, A and B, each need three records, 1, 2, and 3, in a
database.

If both A and B request the records in the order 1, 2, 3, deadlock is
not possible. However, if B asks for the records in the order 3, 2, 1,
then a deadlock can occur.

With three resources, there are 3! = 6 possible combinations each
process can request resources.

What fraction of all combinations is guaranteed to be deadlock
free?

e Suppose that process A requests the records in the order 1, 2, 3.
If process B also asks for 1 first, one of them will get it and the
other will block.

 This situation is always deadlock free since the winner can now
run to completion without interference.

Norwegian University of . .
B NTNU ‘ Sciencgand Technolggy Operatmg SyStemS — Solution TE 3

3.3 Deadlock conditions

...What fraction of all combinations is guaranteed to be deadlock
free?

* The other four combinations can be similarly reasoned about and
shown to lead to possible deadlock:

(1) 1 2 3: deadlock free
(2) 1 3 2: deadlock free
(3) 2 1 3: possible deadlock
(4) 2 3 1: possible deadlock
(5) 3 1 2: possible deadlock
(6) 3 2 1: possible deadlock

« So only one third of the cases are guaranteed to be deadlock
free

@ NTNU | S oy Operating Systems — Solution TE 3 5

3.4 Banker’s algorithm

Consider a system that uses the banker’s algorithm to avoid
deadlocks. At some time a process P requests a resource R, but is
denied even though R is currently available. Does it mean that if the
system allocated R to P, the system would deadlock?

* No.

« An available resource is denied to a requesting process in a
system using the banker’s algorithm if there is a possibility that
the system may deadlock by granting that request.

* |t is certainly possible that the system may not have deadlocked if
that request was granted.

Norwegian University of . .
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS — Solution TE 3 6

3.5 C preprocessor

You want to define a C preprocessor macro to calculate the square of a
given number x as follows:

#define SQUARE(x) (x * Xx)

Explain what is problematic with this macro definition and give an example
of the problematic behavior.

« The C preprocessor performs only syntactic text expansion of macros, it
does not know/understand C syntax or semantics!

« The parameter x is thus replaced by whatever is given as parameter to the
macro invocation, e.g.
SQUARE (1+2)
(which you would expect to be 3*3 = 9) is expanded to
(1+2 * 1+42) = 1+2+2 = 5 (due to arithmetic precedence rules in C)

* There are many more macro pitfalls, see e.g.
https://gcc.gnu.org/onlinedocs/gcc-3.4.6/cpp/Macro-Pitfalls.html for details

Norwegian University of . .
E NTNU ‘ Sciencégand Technolggy Operatmg SyStemS — Solution TE 3 7

https://gcc.gnu.org/onlinedocs/gcc-3.4.6/cpp/Macro-Pitfalls.html

3.6 ELF Segments

You are trying to analyze a binary program using the command readelf
-S prog and obtain the following output (shortened):

Section Headers:

[Nr] Name Type Address Offset
Size EntSize Flags Link Info Align
[25] .data PROGBITS 0000000000004000 00003000
0000000000000 10 COOOEOOOEEOOEEOO WA 0 0 8

Assume that you know that there are only global int variables and each

variable uses four bytes. Can you tell how many global int variables are
declared in the program?

The size of the segment is O0OOOOOOOOOO00010 (hex) = 16 bytes
Thus, it can hold a maximum of 16/4 =4 int variables

However, the alignment requirement is a multiple of 8

* Thus, 3 ints would also take 16 bytes (12 + 4 bytes alignment)
So we cannot say if there are 3 or 4 int variables declared

« ...without further investigation (e.g., using nm)

Norwegian University of . .
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS — Solution TE 3 8

3.7 ELF Symbols

Consider the following (very simple and useless) C program:

1 int foo;

2 int bar;

3 int main(int argc, char **argv) {
4 int a, b;

5 }

Which ELF segment will the variables foo and bar be located in?

« Both are global uninitialized (in the source code) variables, which
are automatically initialized to 0 by the C runtime. They are thus
not stored in the data segment, but in the bss segment

* This saves space in the executable, since variables with initial
value 0 do not need to be saved in the executable

« Aglobal variable int baz=42; would be stored in data, since its
value has to be set when the program starts

Norwegian University of . .
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS — Solution TE 3 9

3.7 ELF Symbols

Consider the following (very simple and useless) C program:

1 int foo;

2 int bar;

3 int main(int argc, char **argv) {
4 int a, b;

5 }

When running the nm command on the binary compiled from the program,
variables a and b are not shown in the command’s output. Explain why.

* a and b are local variables of the function main. Local variables cannot
have a fixed address in memory (like global variables in data and bss),
since we need a separate copy of the variable in case of a recursive call
to the function the variables are declared in

* Thus, these variables are stored on the stack, which grows (and
shrinks) when entering (leaving) a function

* Yes, you can also call main recursively...

Norwegian University of . .
B NTNU ‘ Sciencégand Technolggy Operatmg SyStemS — Solution TE 3 10

