
Operating Systems
Example solutions for Theoretical Exercise 2

Michael Engel

Operating Systems – Solution TE 2 2

2.1 Race conditions
Consider the two parallel threads t1 and t2 that share their data
(variables). Initially, the values of y and z = 0.

a. Give all possible final values for x and the corresponding order of
execution of instructions in t1 and t2 (indicate task switches ↯).
• t1 runs to the end first ↯ then t2 to the end: x = 0
• t2 to line 2 ↯ then t1 to the end ↯ then t2 to the end: x = 1
• t2 to the end ↯ then t1 to the end: x = 3

Are there other possibilities giving additional values?

1 int t1() {
2 int x;
3 x = y + z;
4 }

1 int t2() {
2 y = 1;
3 z = 2;
4 }

t1: t2:

Operating Systems – Solution TE 2 3

2.1 Race conditions

a. Give all possible final values for x and the corresponding order of execution of
instructions in t1 and t2 (indicate task switches ↯).
Are there other possibilities giving additional values?
• This depends on the code generated by the compiler
• Additions (t1 l.3) often consist of multiple instructions in machine language, e.g.:

A. fetch operand y into register r1
B. fetch operand z into register r2
C. add r1 + r2, store result in r3
D. store r3 in memory location of x

• If a task switch to t2 occurs between machine instructions A and B and t2 runs to
completion before switching back to t1, then:

• y is read as 0 (t2 didn’t set y yet)
• z is read as 2 (t2 sets z before execution instruction B of add. in t1)
• the sum is then x = 0 + 2

1 int t1() {
2 int x;
3 x = y + z;
4 }

1 int t2() {
2 y = 1;
3 z = 2;
4 }

t1: t2:

Operating Systems – Solution TE 2 4

2.1 Race conditions
b. Is it possible to use semaphores so that the final value of x is 2?
 If so, give a solution using semaphores and wait/signal operations.
 If not, explain why not. (typo in the exercise…)
• The addition x = y + z is a critical section

• We can protect it with a semaphore or mutex:

• But this can only guarantee that x can never have the value 2
• The opposite would require splitting the addition into steps

as shown on the previous slide

0 sem s = 1;
1 int t1() {
2 int x;
3 s.wait();
4 x = y + z;
5 s.signal();
6 }

1 int t2() {
2 s.wait();
3 y = 1;
4 z = 2;
5 s.signal();
6 }

t1: t2:

Operating Systems – Solution TE 2 5

2.2 Semaphores

a. Use semaphores and insert wait/signal calls into the two
 threads so that only “wordle” is printed.

1 int t1() {
2 printf("w");
3 printf("d");
4 }

1 int t2() {
2 printf("o");
3 printf("r");
4 printf("l");
5 printf("e");
6 }

t1: t2:

0 sem s1, s2;
1 int t1() {
2 s1.wait();
3 printf("w");
4 s2.signal();
5 s1.wait();
6 printf("d");
7 s2.signal();
8 }

1 int t2() {
2 s2.wait();
3 printf("o");
4 printf("r");
5 s1.signal();
6 s2.wait();
7 printf("l");
8 printf("e");
9 }

t1: t2:

Operating Systems – Solution TE 2 6

2.2 Semaphores
b. Give the required initial values for the semaphores.

0 sem s1, s2;
1 int t1() {
2 s1.wait();
3 printf("w");
4 s2.signal();
5 s1.wait();
6 printf("d");
7 s2.signal();
8 }

1 int t2() {
2 s2.wait();
3 printf("o");
4 printf("r");
5 s1.signal();
6 s2.wait();
7 printf("l");
8 printf("e");
9 s2.signal();
10}

t1: t2:

• t1 has to run first to print "w", so s1 has to be set to 1 initially.
• t2 has to wait until the "w" has been printed.

• It is signalled by t1, so the initial value of s2 has to be 0.

Operating Systems – Solution TE 2 7

2.3 Even more semaphores

Which strings can be output when running the 3 threads in parallel?
• Either t1 or t2 could start first, so the first letter can be A or B
• Then both t1 and t2 signal s_c, only after both have signalled s_c, t3 can start and

print C
• This, t3 signals s_a and s_b, which start in arbitrary order again
• Accordingly, the output is ([AB|BA]C)+

• so print A or B in arbitrary order, then print C, then the process starts again
• Here, we have used a regular expression to indicate the structure of a text

pattern. Regular expressions (short: regexps) are a common tool in Unix

1 int t1() {
2 while(1) {
3 printf("A");
4 s_c.signal();
5 s_a.wait();
6 }
7 }

1 int t2() {
2 while(1) {
3 printf("B");
4 s_c.signal();
5 s_b.wait();
6 }
7 }

1 int t3() {
2 while(1) {
3 s_c.wait();
4 s_c.wait();
5 printf("C");
6 s_a.signal();
7 s_b.signal();
8 }
9 }semaphore s_a=0, s_b=0, s_c=0;

Operating Systems – Solution TE 2 8

2.4 Deadlocks

a. Executing the threads in parallel could result in a deadlock. Why?
• t1 runs first until line 4 (so lock1=0, lock2=1) ↯ switch to t2
• t2 starts and runs until line 3 (so lock1=0, lock2=0) ↯ back to t1
• t1 waits for lock2 in line 5 ↯ switch to t2, waits for lock1 in line 4
• This results in a mutual waiting condition which is not resolved
Note that this deadlock does not occur in all execution/task switch orders!

1 int t1() {
2 z = z + 2;
3 lock1.wait();
4 x = x + 2;
5 lock2.wait();
6 lock1.signal();
7 y = y + 2;
8 lock2.signal();
9 }

int x=0, y=0, z=0;
semaphore lock1=1, lock2=1;

1 int t2() {
2 lock2.wait();
3 y = y + 1;
4 lock1.wait();
5 x = x + 1;
6 lock1.signal();
7 lock2.signal();
8 z = z + 1;
9 }

Operating Systems – Solution TE 2 9

2.4 Deadlocks

a. Executing the threads in parallel could result in a deadlock. Why?
Are there other execution orders leading to a deadlock?
• t2 runs first until line 2 (so lock2=0, lock1=1) ↯ switch to t1
• t1 starts and runs until line 3 (so lock1=0, lock2=0) ↯ back to t2
• t2 waits for lock2 in line 4 ↯ switch to t1, waits for lock1 in line 5

1 int t1() {
2 z = z + 2;
3 lock1.wait();
4 x = x + 2;
5 lock2.wait();
6 lock1.signal();
7 y = y + 2;
8 lock2.signal();
9 }

int x=0, y=0, z=0;
semaphore lock1=1, lock2=1;

1 int t2() {
2 lock2.wait();
3 y = y + 1;
4 lock1.wait();
5 x = x + 1;
6 lock1.signal();
7 lock2.signal();
8 z = z + 1;
9 }

Operating Systems – Solution TE 2 10

2.4 Deadlocks
b. What are the possible values of
 x, y and z in the deadlock state?
• x = 2, y = 1, z = 2

c. What are the possible values of x, y and z if the program
terminates successfully (i.e., without a deadlock)?
Hint: Remember that an assignment z = z + 1 consists of
multiple atomic operations on x.
• t1 runs first to the end, then t2 (or vice versa): x=3, y=3, z=3
• But a thread switch could e.g. also occur in the "middle" of line

8 of t2, e.g. before z is written back ↯ switch to t1 (z=2), run t1
to the end ↯ switch to t2, write back its value of z ➙ z=1!

Can you find other possible orders that run to completion?

1 int t1() {
2 z = z + 2;
3 lock1.wait();
4 x = x + 2;
5 lock2.wait();
6 lock1.signal();
7 y = y + 2;
8 lock2.signal();
9 }

int x=0, y=0, z=0;
semaphore lock1=1, lock2=1;

1 int t2() {
2 lock2.wait();
3 y = y + 1;
4 lock1.wait();
5 x = x + 1;
6 lock1.signal();
7 lock2.signal();
8 z = z + 1;
9 }

