
Department of Computer Science – IDI TDT4186 Operating Systems

https://folk.ntnu.no/michaeng/tdt4186_22/
michael.engel@ntnu.no

Theoretical exercises
Spring 2022

Theoretical Exercises 2
Synchronization

Please submit solutions on Blackboard by Friday, 11.2.2022 12:00h

2.1 Race conditions

Consider the two parallel threads t1 and t2 that share their data (variables). Initially, the values of y and z = 0.

1 int t1() {
2 int x;
3 // initialization code
4 x = y + z;
5 // other code
6 }

1 int t2() {
2 // initialization code
3 y = 1;
4 z = 2;
5 // other code
6 }

a. Give all possible final values for x and the corresponding order of execution of instructions in t1 and t2 (indicate
task switches).

b. Is it possible to use semaphores so that the final value of x is 2? If so, give a solution using semaphores and
wait/signal operations. If not, explain why now.

2.2 Semaphores

Consider the two parallel threads t1 and t2.

1 int t1() {
2 printf("w");
3 printf("d");
4 }

1 int t2() {
2 printf("o");
3 printf("r");
4 printf("l");
5 printf("e");
6 }

a. Use semaphores and insert wait/signal calls into the two threads so that only “wordle” is printed.

b. Give the required initial values for the semaphores.

https://folk.ntnu.no/michaeng/tdt4186_22/
mailto:michael.engel@ntnu.no


Department of Computer Science – IDI TDT4186 Operating Systems

2.3 Even more semaphores

Consider the parallel threads t1, t2 and t3 using the following common semaphores:

1 semaphore s_a = 0, s_b = 0, s_c = 0;

1 int t1() {
2 while(1) {
3 printf("A");
4 s_c.signal();
5 s_a.wait();
6 }
7 }

1 int t2() {
2 while(1) {
3 printf("B");
4 s_c.signal();
5 s_b.wait();
6 }
7 }

1 int t3() {
2 while(1) {
3 s_c.wait();
4 s_c.wait();
5 printf("C");
6 s_a.signal();
7 s_b.signal();
8 }
9 }

Which strings can be output when running the three threads in parallel?

2.4 Deadlocks

Consider the parallel threads t1 and t2 using the following common variables and semaphores:

1 int x = 0, y = 0, z = 0;
2 semaphore lock1 = 1, lock2 = 1;

1 int t1() {
2 z = z + 2;
3 lock1.wait();
4 x = x + 2;
5 lock2.wait();
6 lock1.signal();
7 y = y + 2;
8 lock2.signal();
9 }

1 int t2() {
2 lock2.wait();
3 y = y + 1;
4 lock1.wait();
5 x = x + 1;
6 lock1.signal();
7 lock2.signal();
8 z = z + 1;
9 }

a. Executing the threads in parallel could result in a deadlock. Why?

b. What are the possible values of x, y and z in the deadlock state?

c. What are the possible values of x, y and z if the program terminates successfully (i.e., without a deadlock)?
Hint: Remember that an assignment z = z + 1 consists of multiple atomic operations on x.


	Race conditions
	Semaphores
	Even more semaphores
	Deadlocks

