
Operating Systems
Example solutions for Theoretical Exercise 1

Michael Engel

Operating Systems – Solution TE 1 2

1.1 Unix processes and the shell
a. init is the process at the top of the Unix process
 hierarchy. Explain why init has to run all the time when
 a Unix system is running.
• init has to "catch the zombies", i.e. it becomes the new parent

process of processes
• However, init traditionally has additional tasks, e.g.

• Respawn getty processes on terminals when a user logs out
• Change runlevels of the system, which define the set of

activities to start and run in a certain system state
• e.g. single user more, text mode, GUI mode

• Activities for a run level are defined in /etc/inittab
• Today, "modern" init systems redistribute some of init’s original

functionality among more/other processes

Operating Systems – Solution TE 1 3

1.1 Unix processes and the shell
b. Describe the function of execl in your own words
 (Hint: read the man page).
• The exec family of functions replaces the current process image with a

new process image. execl is a function that allows the caller to pass
command line parameters to the executed program, which appear as
argv array in main.

• Also describe the content of the second parameter passed to execl
• The second parameter is given as const char *arg0. Like printf,
execl is a function with a variable number of arguments. The first one
("path") is always the Unix path of the process to execute, the subsequent
ones are a list of arguments passed as argv[0], argv[1], …

• The second parameter, accessible as argv[0]in the called program, by
convention always contains the name of the executed program (e.g.,
"vim").

• The command line parameters given, e.g., in the shell appear as
argv[1]…

Operating Systems – Solution TE 1 4

1.1 Unix processes and the shell
c. Explain the output of the following command in your own words.
 Which data is transferred through the pipeline and what
 operation does the grep command perform here?
 ls | grep -vc .pdf

• This command lists all files in the current directory (since no
directory name is passed to ls) and passes this list as text
(one line per file) through the pipe to the grep command.

• grep reads this list from the pipe line by line (separated by '\n').
The options to grep mean
• -v: output lines not containing the given pattern .pdf
• -c: output the count of lines instead of the contents

• So the command counts the number of files in the current
directory that have names not ending in .pdf

Operating Systems – Solution TE 1 5

1.1 Unix processes and the shell
d. Try to find a shorter form of the following shell command
 that does not require a pipeline:
 cat /etc/passwd | grep root | cat > /tmp/x
• One solution is
grep root < /etc/passwd > /tmp/x

• I/O redirection is a powerful feature and you can supply multiple
redirections per command. We will see later that the standard
operators < and > redirect the standard input and standard output
channels (text streams) of a program, but there are additional
channels that can be redirected (e.g., standard error output using
"2>").

• The solution using cat is less efficient since three processes (2 x cat,
1 x grep) have to be created instead of only one.

• See also
https://stackoverflow.com/questions/11710552/useless-use-of-cat

https://stackoverflow.com/questions/11710552/useless-use-of-cat

Operating Systems – Solution TE 1 6

1.2 fork
Consider the following line of C code:
(Caution: Do not try to execute this!)
while (fork());
a. Describe the program behavior after 1, 2, 3 and n iterations
 of the while loop.
• The first iteration creates one child process, resulting in two processes
• The child process then exits the while loop, since 0 is returned to it by
fork

• The second iteration of the parent process then creates another child
process… and so on

• So in theory we only have one process created per loop iteration
which terminates immediately (note: we didn’t specify this since we
only gave the one line of code…)

• However, since there is no parent wait()ing for the termination of the
child process, our process table fills up with zombie processes,
potentially making the system unusable!

Operating Systems – Solution TE 1 7

1.2 fork
• Here’s the

"invasion of
the zombies"
shown in
htop

• We can see
that this
keeps the
CPU cores
quite busy…

Operating Systems – Solution TE 1 8

1.2 fork
• Consider the following line of C code: (Caution: Do not try

to execute this!) while (fork());
b. The behavior of a program like this can lead to problems.
Describe the problems that can occur. Try to find a way to
avoid the problem in Unix (without changing the program
above).
• The ulimit command (actually a shell built-in command) can

restrict the resource use of
a specific user. This includes
not only the number of
processes, but also CPU time,
file size, number of open file
descriptors, …

Operating Systems – Solution TE 1 9

1.3 Process execution order
• How many times does the following program print “Hello

World”? Draw a simple tree diagram to show the parent-
child hierarchy of the spawned processes.

• "Hello World" is printed
8 times.

• fork returns to the exact
place in the program at
which it was called. All
local and global variables
keep their values!

• So the number of processes created increases with the
value of the loop variable i, each process creates an
additional child in each iteration it exists.

#include <stdio.h>
#include <unistd.h>
int main() {
 int i;

 for (i = 0; i < 3; i++) fork();
 printf("Hello World\n");
 return 0;
}

Operating Systems – Solution TE 1 10

1.3 Process execution order
#include <stdio.h>
#include <unistd.h>
int main() {
 int i;

 for (i = 0; i < 3; i++) fork();
 printf("Hello World\n");
 return 0;
}

59101

59101 59102i=0

start

i=1 59101 59103

i=2 59101

5910559102

59104 59103 59102 5910559107 59106 59108

(arbitrary process IDs)

printf() printf() printf() printf() printf() printf() printf() printf()

parent
continues child

process created

This example also shows that the order of process execution after fork
is not specified, the order implemented is a decision of the scheduler!

