NTNU
B Norwegian University of
Science and Technology Department of Computer Science — IDI TDT4186 Operating Systems

https:/folk.ntnu.no/michaeng/tdt4186_22/ Practical exercises
michael.engel@ntnu.no Spring 2022

Practical Exercise 3
Unix Shell

Please submit solutions on Blackboard by Tuesday, 19.4.2022 12:00h

In this assignment, you will combine a number of topics you have learnt about in this course so far — such as process
and memory management, I/O handling and redirection.

Your task is to implement a simple Unix shell called the “famous little unix shell” flush. flush should be an interactive
shell with minimal functionality that is nevertheless doing some useful things.

You should build flush in several steps as detailed below.

3.1 Basic functionality

flush prompts the user for input by printing the current working directory followed by a colon (:) character. The entered
text is split into command name and arguments. Arguments are separated from each other and from the command
name by space (ASCII 0x20) or tab (0x09) characters.

Implement the command line parsing, create a new process (using fork (2)) and execute the entered command with
the given parameters (using a variant of exec (3)).

Hint: For this task, you do not need to handle parameters with quotes or backslash to escape whitespace characters
(e.g. 1s /my/home\ dir or 1s "/my/home dir"). You can also ignore search paths for commands and always
assume that a complete absolute (starting with /) or relative path is given for the command name.

flush waits for the termination of the started (foreground) process (using waitpid(2)) and prints the exit status of the
command along with the command line like this:

/home/user/shelldev: /bin/echo test
test
Exit status [/bin/echo test] = 0

After printing the status, the shell is ready to accept a new command.

flush terminates when control-D (ASCII 0x04) is entered on the command line.

3.2 Changing directories

Implement the cd command to change directories (using chdir (2)). You can ignore a cd command without a param-
eter (a real Unix shell would change the path to the user's home directory).

Remember that cd has to be an internal shell command (think about why this needs to be internal).

https://folk.ntnu.no/michaeng/tdt4186_22/
mailto:michael.engel@ntnu.no

NTNU
B Norwegian University of
Science and Technology Department of Computer Science — IDI TDT4186 Operating Systems

3.3 1/0 redirection

Implement simple 1/O redirection for stdin and stdout when this is indicated on the command line using the < or >
characters followed by a file name.

You can simplify this task by only accepting input and output redirections as the last parameters of a command line
(excluding the “&” character for background processes, see below), e.g.:

/home/user/shell: 1ls > /tmp/foo

Exit status: 0

/home/user/shell: head -1 < /etc/passwd
root:*:0:0:System Administrator:/root:/bin/sh

Exit status: 0

/home/user/shell: head -1 < /etc/passwd > /tmp/foo2
Exit status: 0

3.4 Background tasks

If a command line ends with the character “&”, the entered command is to be executed as a background process, i.e.,
flush does not wait for the termination of the process but directly prompts the user to input a new command.

Before printing a new prompt, flush should collect all background processes that have terminated (zombies) and print
their exit status like for the foreground processes of the first subtask. For this, you need to store the PID of each
created background process and its command line, e.g., in a linked list.

3.5 Background task status

Implement an internal shell command jobs to print all running background processes (PID and command line, one
line per process).

3.6 Optional bonus task: Pipelines
Implement command pipelines using the pipe (2) syscall, e.g.:

/home/user/shell: 1s -1 | grep root | cat > /tmp/file

	Basic functionality
	Changing directories
	I/O redirection
	Background tasks
	Background task status
	Optional bonus task: Pipelines

