
Operating Systems
Q&A Session – 18.02.2021

Michael Engel

Operating Systems Q&A 2

Corona situation and consultation
• The Gløshaugen campus is open again…

• but only for small groups as before (adhere to the known Corona
precautions as usual when you’re on campus!)

• No physical lectures for the foreseeable future

• Piazza license payment finally confirmed…
• …but the nag requester on piazza hasn’t disappeared yet :(

• Request for TA consultation hours
• We are organizing this and will offer at least two hours per week (if

all goes well, four hours)
• A TA will be available in a zoom session
• You can join from home or from campus if you are doing group

work there
• Details (times etc.) early next week

Operating Systems Q&A 3

Practical exercise organization
• Submission deadline for PE2 extended

• …due to popular demand! 😉
• There was some confusion since we postponed the

submission of PE1
• New deadline:

tomorrow, Friday, February 19th 14:00

• The following PEs will (most probably) not be postponed
• So for TE3, PE3 and all following ones the deadline is:

Thursday at 12:00

• Some problems with getting correct points in PE1
• Two groups accidentally received 0 points, looking into it

Operating Systems Q&A 4

PE2
Confusion on some details:
• Error checking – where, how, to which extent?

• scanf error checking is important
• scanf tells you if e.g. the input was a character string

instead of a number
• printf error checking is less important

• printf returns the number of successfully printed
characters

• this can be < the number of characters to print
• …but rarely on a terminal
• rather when writing to a file and the disk is full

• exit error checking? void exit(int status);
"RETURN VALUES
 The exit() and _Exit() functions never return."

Operating Systems Q&A 5

PE2
Confusion on some details:
• wait and zombies

• Most of you have figured out that wait is problematic:
"The wait(2) system call suspends execution of the calling
thread until one of its children terminates."

• This would keep the program from reading an additional
alarm time and starting a new child proc.

• Read the manpage 😎
• waitpid(2) might also help:

"If pid is -1, the call waits for any child process"
• Tip: Look at the "WNOHANG" option…

• "Why don’t we use signal?"
• Because we didn’t discuss Unix IPC and signals in the lecture

so far (but great that you have found it!)

