
Operating Systems
Lecture 21: Security (1)

Michael Engel

Operating Systems 21: Security (1) 2

Overview
• Overview of security problems
• Permission management
• System software and security
• Software bugs
• Examples
• Conclusions

2

Operating Systems 21: Security (1) 3

Security problems
• Definitions of relevant terms

• Safety
• protection against risks due to hardware and software

errors or failures
• Security

• protection of users and computers against intended
errors (attacks)

• Both topics are highly relevant for system software
• Today, we will only discuss security

• Exploitation of security holes
• malware
• social engineering

3

Operating Systems 21: Security (1) 4

Operating system security
• Someone...

• differentiation of persons and groups of persons
• has to be deterred from doing...

• using technical and organizational methods
• some...

• limited only by our imagination
• unexpected things!

• 1) unauthorized reading of data (secrecy, confidentiality),
• 2) unauthorized writing of data (integrity),
• 3) working under a "false flag" (authenticity),
• 4) unauthorized use of resources (availability),
• etc…

• Differentiation between
• internal
• and external attacks

4

Operating Systems 21: Security (1) 5

Example: fake login screen
• Attacker starts a user program that simulates a login screen
• The unsuspecting user enters username and (secret) password

• Attacker program records user name and password
• Attacker program terminates the current shell

• Login session of the attacker is closed and the regular login
screen appears
• User assumes incorrectly

typed password
• Remedy: require the user to start

the login sequence using a key
combination that cannot be
intercepted by a user program
• e.g. CTRL-ALT-DEL in

Windows NT and following

5

Operating Systems 21: Security (1) 6

Malware example: viruses
• Program code inserted into another program, which can be replicated

this way
• Virus sleeps until the infected program is executed
• Start of the infected program results in virus reproduction
• Execution of the virus functionality can be time-controlled

• Sorts of viruses
• Boot sector virus: executed at system startup time
• Macro virus: in scriptable programs, e.g. Word, Excel

• Reproduced through documents (e.g. sent by email)!
• Executable program as virus

• Distribution through…
• exchange of storage media (USB memory sticks etc.)
• email attachments
• web pages

6

Operating Systems 21: Security (1) 7

Example: social engineering
• Not a system software problem

• …but very important
• Gain access to information by exploiting human errors
• Phishing

• obtain data of an internet user using forged addresses (e.g.
with similar names/typos)

• e.g. by using forged emails from banks or government
institutions

• Pharming
• manipulation of DNS requests by web browsers
• redirect accesses, e.g. to forged bank websites
• most users ignore browser warnings about invalid security

certificates

7

Operating Systems 21: Security (1) 8

Types of malware
• Viruses

• programs inadvertently distributed by a user
• infect other programs
• …and reproduce this way

• Worms
• do not wait for user actions to propagate to another computer
• actively try to invade new systems
• exploit security holes on target systems

• Trojan horses ("trojans")
• program disguised as useful application (or game…)
• in addition to the useful function, additional functionality is

provided without the user noticing, e.g. providing an attacker
with access to the local computer via internet

8

Operating Systems 21: Security (1) 9

Types of malware (2)
• Root kit

• collection of software tools to...
• disguise future logins of an attacker
• hide processes and files

• is installed after a computer system is compromised
• can hide itself and its activities from the user

• e.g. by manipulating tools to display processes (ps),
directory contents (ls), network connections (netstat) ...

• …or by manipulating system-wide shared libraries (libc)
• …or directly by manipulating the OS kernel

• Often, malware uses a combination of these types

9

Operating Systems 21: Security (1) 10

Permission management: objectives
• Protect stored information from

• breach of confidentiality
• theft of information
• unwanted manipulation (including encryption: ransomware)

• in all multi-user systems
• …and every system connected to the Internet is in fact a

multi-user system!

10

Operating Systems 21: Security (1) 11

Permission management: requirements
• All objects of a system must be uniquely and unforgeably

identifiable
• (external) users of a system must be uniquely and unforgeably

identifiable
➛ authentication

• Access to objects allowed only if the user has the required
permissions

• Access to objects should only be allowed using the appropriate
object management
• permissions must be stored in an unforgeable way; transfer

of permissions must only take place it a controlled way
• it must be possible to validate basic protection mechanisms

with low overhead

11

Operating Systems 21: Security (1) 12

Permission management: design principles
• Principle of least privilege

• Allow a person or software component only those
permissions that are required for the functionality to be
realized

• Standard case: deny permission
• Counterexample: Unix "root"

• Fail-safe defaults
• Example: newly installed server software

• Separation of duties
• Multiple conditions exist to allow an operation

12

Operating Systems 21: Security (1) 13

Access matrix
• Elements of the matrix:

• Subjects (persons/users, processes)
• Objects (data, devices, processes, memory, …)
• Operations (read, write, delete, execute, …)

• Question: Is operation(subject, object) permitted?

Objects

Subjects Permissions

Operating Systems 21: Security (1) 14

Basic model: file/process attributes
• Properties related to a user:

• for which user is the process being executed?
• which user is the owner of a file?
• which permissions does the owner of a file give to him/

herself and which permissions to other users?
• Permissions of a process when accessing a file

• Attributes of processes: user ID
• Attributes of files: owner ID

file 1 file 2 file 3
user 1
user 2 read
user 3
user 4

Operating Systems 21: Security (1) 15

Access matrix variants
• Colums: ACL – Access Control Lists

• for every access to an object, the access permissions
are validated based on the identity of the requesting
subject (user)

• Rows: Capabilities
• for every access to an object a property is validated

which is owned by the subject and which can be passed
to other subjects on demand

• Rule-based: mandatory access control
• rules are evaluated for every access

Operating Systems 21: Security (1) 16

ACLs
• Column-wise view of the access matrix:

Access Control List (ACL)
• ACLs indicate for every object which subjects are allowed

to perform which operations on it

Objects

Subjects Permissions

Operating Systems 21: Security (1) 17

ACLs
• ACLs can be configured by…

• subjects having an appropriate ACL entry granting this
permission

• the creator of the object (file)
• Example: Multics OS – triplet (user, group, permissions)

File 0 (Jan, *, RWX)
File 1 (Jan, system, RWX)
File 2 (Jan, *, RW-), (Els, staff, R--), (Maike, *, RW-)
File 3 (*, student, R--)
File 4 (Jelle, *, ---), (*, student, R--)

• Windows (starting with NT)
• object: allow, deny
• full control, modify, read&execute, ...

Operating Systems 03: Challenges and tasks of OSs

user: michael

group: staff

18

Unix access permissions
• Unix: simple access control lists
• Processes have a user ID and a group ID
• Files have an owner and a group
• Permissions are related to the

user (owner), group, and all others

file.tex
rw– –––r––

others

File attributes:
rwx

execute: yes/no

write: yes/no

read: yes/no

Operating Systems 21: Security (1) 19

Problem: permission extensions
• Example – keep a high score list for a game

• High score list: /home/me/games/tetris/highscores
• Program: /home/me/bin/games/tetris

• Every player should be able to enter his/her own high score

1. all users have write permission to the high score list
• too many permissions (does not work)
• every user could arbitrarily manipulate the high score list

2. SetUID: only "me" has write permissions
• Tetris program has "setuid" permissions
• as soon as the Tetris program is executed, the process is

assigned the user ID of the owner of the executable program

Operating Systems 21: Security (1) 20

Unix: users and processes
• Each process represents a user
• Process attributes:

• User ID (uid), group ID (gid)
• Effective uid (euid), effective gid (egid)

• Determine permissions of a process when accessing files
• Only a few highly privileged processes are allowed to change

their uid and gid
• e.g. the login process

• After verifying the user’s password, the login
process sets uid, gid, euid and egid

• All other processes: children of login
• Child processes inherit the parent attributes

uid: fritz
gid: students
euid: fritz
egid: students

Process

Operating Systems 21: Security (1) 21

Unix solution: setuid mechanism
• File which contains trustworthy program code (e.g. Tetris) is given an

additional permission bit: setuid (s bit)
• shown as "s" instead of "x" for executable in directory listing
• there is also a setgid bit (rarely used)

• exec of setuid programs:
• executing process obtains the UID of the program owner as

effective UID
• precisely: the UID of the file containing the program

• Process execution performed using the permissions of this user as
long as the program is not terminated

• Contradicts the principle of least privilege
• Workaround: create special user for the application instead of

using "root"
• It is considered good programming style to return any setuid

permissions as soon as they are no longer required by a process

Operating Systems 21: Security (1) 22

Example: high score list

user: michael

group: tetris

Tetris
r–s –––––x

others

user: michael

group: tetris

Highscores
rw– –––r––

others

uid: fritz
gid: students
euid: fritz
egid: students

Shell

Operating Systems 21: Security (1) 23

Example: high score list (2)

user: michael

group: tetris

Tetris
r–s –––––x

others

user: michael

group: tetris

Highscores
rw– –––r––

others

uid: fritz
gid: students
euid: fritz
egid: students

Shell

uid: fritz
gid: students
euid: fritz
egid: students

Shell

fork()

Operating Systems 21: Security (1) 24

Example: high score list (3)

user: michael

group: tetris

Tetris
r–s –––––x

others

user: michael

group: tetris

Highscores
rw– –––r––

others

uid: fritz
gid: students
euid: fritz
egid: students

Shell

uid: fritz
gid: students
euid: fritz
egid: students

Shell

fork()
uid: fritz
gid: students
euid: michael
egid: students

Tetris

exec
Tetris

Operating Systems 21: Security (1) 25

setuid problems
• Extension of the permissions of a user exactly for the case of

using the given program
• "Owner" of the program trusts the user who is using the program

• Owner can be the administrator, but also normal users

• Problem: program bugs
• can result in significant permission extensions
• e.g. enable calling a shell (with inherited permissions of the

owner of the setuid process) from such a program

• Practical experience: still to many permissions granted!

Operating Systems 21: Security (1) 26

Capabilities
• Row-wise view of the access matrix: Capability
• Capabilities indicate for each subject in which ways it is allowed

to access which objects

Objects

Subjects Permissions

Operating Systems 21: Security (1) 27

Example
• Basic implementation: Unix file descriptors
• Propagated using the fork system call

• Allows access to files without repeated validation of the Unix
access permissions

Process control block Table of
open files

pid

file descriptors

Operating Systems 21: Security (1) 28

Rule-based access matrix
• Mandatory Access Control
• Concept:

• subjects and objects possess attributes ("labels")
• decision about granting access by evaluating rules

• Implemented in "security kernels", e.g. SELinux

Objects

Subjects Permissions

Evaluated for
every access
using a set of
given rules

Operating Systems 21: Security (1) 29

System software and security
• Hardware-based protection

• MMU
• protection rings

• …complemented by protection in the system software
• Exclusive control of the hardware by the OS
• Exclusive control of all processes
• Exclusive control of all resources
• Provisioning of

• identification mechanisms
• authentication mechanisms
• privilege separation
• cryptographic protection of information

Operating Systems 21: Security (1) 30

Hardware-based protection: MMU
• Memory Management Unit

• Hardware component of the CPU that translates and controls
program accesses to memory

• Translation of the process view (virtual addresses) into the
hardware view (physical addresses)

• Main memory is partitioned into pages
• Protection by...

• only mapping the exact set of required main memory pages
into the virtual address space of a process

• isolation of the physical address spaces of different processes
• protection bits for each page, controlled at every access

• read/write/execute code
• access permitted in user mode/supervisor mode

Operating Systems 21: Security (1) 31

Protection rings
• Privilege concept

• All code is executed in the context of a given protection ring
• Code running in ring 0 has access to all system resources
• User programs run in ring 3
• Rings 1 & 2 for OS-like code

• e.g. device drivers
• Rings restrict…

• the usable subset of processor
machine instructions

• e.g. disabling interrupts (sei/cli)
not permitted in rings > 0

• the accessible address range for
the process

• disabling of I/O accesses

Operating Systems 21: Security (1) 32

Software-based protection
• Identification mechanisms
• Unix: user and group identification

• Numeric value
• Translated into texts (user and group names) durch lookup in
/etc/passwd

• Resources are assigned an owner

• Superuser: uid = 0
• Has all permissions possible in the system

Operating Systems 21: Security (1) 33

Software-based protection (2)
• Authentication mechanisms

• Unix login
• Reads user name and password
• Verification of the entered password with the one recorded in the

system
• Either by encrypting the entered password and comparison with

the recorded encrypted value
• Or by verification of a hash value

• The login process then starts the first user process (e.g., a shell)
with the uid and gid of this user

Operating Systems 21: Security (1) 34

Software-based protection (3)
• Cryptographic protection of information

• e.g. DES encryption of user passwords
• Originally in Unix stored in the file /etc/passwd

root:4t6f4rt3423:0:0:System Administrator:/var/root:/bin/sh
daemon:ge53r3rfrg:1:1:System Services:/var/root:/usr/bin/false
me:1x3Fe5$gRd:1000:1000:Michael Engel:/home/me:/bin/bash

• Problem: encrypted passwords were readable for all users!
• …could be decrypted using a "brute force" attack given enough

time
• readily available tools, e.g. "John the Ripper"

• Today: only user information stored in /etc/passwd
• Passwords are now stored separately in /etc/shadow!

-rw-r--r-- 1 root root 1353 May 28 22:43 /etc/passwd
-rw-r----- 1 root shadow 901 May 28 22:43 /etc/shadow

Operating Systems 21: Security (1) 35

Software bugs
• Trade-off: performance ↔ security
• C, C++, Assembler: unmanaged languages

• Pointers, array bounds, value overflows
• C#, Java: managed languages

• Not usable for system software development!
• …why?
• Managed languages also have security problems!

• Problems
• Buffer overflows
• Value range overflows

• Error statistics
• One error per 1000 lines of code on average
• Independent of the implementation language!

Operating Systems 21: Security (1) 36

Value ranges
• Problem: integer numbers are represented as bit strings with a

limited number of bits
• Example: "char" data type in C

• Represented as signed 8 bit value
• Value range: -27 ... +27 – 1
• …or -128 ... +127

• The C code results in the following
calculation in binary:

• Only the least significant 8 bits are significant
• thus the result = -126!

char a = 127;
char b = 3;
char result = a + b;

 01111111 (a)
+00000011 (b)
 10000010 (result
 is negative!)

Operating Systems 21: Security (1) 37

Value ranges (2)
• The following code results in problems:

char string[127] = "Hello World!\n"
char a = 127;
char b = 3;

...

char myfunc(char *string, char index) {
 return string[index];
}

...
printf("%x", myfunc(string, a+b));

Operating Systems 21: Security (1) 38

Heap overflow
• Heap: memory area for dynamically allocated data (e.g. via malloc)
• Buffer overflows in the heap can be problematic

• Memory ranges separately allocated with malloc can be
contiguous in main memory

• There are no checks for overflows
• By passing incorrect sizes for data regions, an attacker can

overwrite other data on the heap
• Example: Microsoft JPEG GDI+ (MS04-028)

• Size values in JPEG image files were not controlled
• "Normal" images files contain valid values

• These do not result in erroneous behavior
• Manipulated image files contain invalid values

• Overwrite other data on the heap

Operating Systems 21: Security (1) 39

Heap overflow (2)
#define BUFSIZE 16
#define OVERSIZE 8 /* overflow buf2 by OVERSIZE bytes */

int main(void) {
 u_long diff;
 char *buf1 = malloc(BUFSIZE),
 *buf2 = malloc(BUFSIZE);

 diff = (u_long)buf2 - (u_long)buf1;
 printf("buf1 = %p, buf2 = %p, diff = 0x%x\n", buf1, buf2, diff);

 memset(buf2, 'A', BUFSIZE-1);
 buf2[BUFSIZE-1] = '\0';

 printf("before overflow: buf2 = %s\n", buf2);
 memset(buf1, 'B', (u_int)(diff + OVERSIZE));
 printf("after overflow: buf2 = %s\n", buf2);
 return 0;
}

Operating Systems 21: Security (1) 40

Result…
• The value range is exceeded by 8 bytes

• buf1 exceeds its limit and arrives at the heap area in which
buf2 is stored

• This heap area of buf2 still has valid contents
• Thus, the program does not terminate, but rather unexpectedly

manipulates the data stored in buf2!

Operating Systems 21: Security (1) 41

Unix Morris worm (sendmail)
• One of the first worms distributed over the Internet
• Written by a student of Cornell University, Robert Tappan Morris, and

activated on November 2, 1988, from a computer at the MIT
• From the MIT to disguise the real origin of the worm
• Today, Robert Tappan Morris is professor at the MIT! :-)

• Exploited a security hole in the sendmail system
• Buffer overflow in gets()
• Written to determine the size of the Internet,

should infect each system only once
• …but had a fatal bug in its replication function!

• 6000 Unix systems infected
• Cost of fixing damages estimated between

US$10 and US$100 million
• …Morris was convicted to 3 years jail on

probation and a US$10.000 fine...

Operating Systems 21: Security (1) 42

Michelangelo virus
• First discovered in New Zealand in 1991
• Boot sector virus, infects e.g. MS-DOS systems

• Only uses BIOS functions, no DOS system calls
• Time-activated virus, active on March 6th
• Overwrites the first 100 sectors of the (first) hard disk with zeros
• Distribution using boot sectors of floppy disks

• Installed itself in the boot sector of the hard disk
• One of the first viruses broadly discussed in the media

• …but its effects were spectacularly exaggerated ;-)
• Some commercial software was accidentally delivered on disks

with a boot sector virus
• Today: viruses on USB memory sticks, mobile phones with

USB interfaces, …fresh from the factory!

Operating Systems 21: Security (1) 43

Sony BMG root kit
• Software on copy protected CD-ROMs with Digital "Rights"

Management (DRM) technology
• Filtering driver for CD-ROM drives and IDE disk controllers to

control access to media
• Installed without informing the user or asking for approval

• Control over the use of data of Sony BMG
• …on Windows systems

• Hidden from analysis using root kit functionality
• Does not appear in the installed software list of the Windows

control center and is not removable using uninstaller tools
• Does not only hide related files, directories, processes and registry

entries, but globally everything starting with the string sys
• Enables other malware to hide itself using this root kit functionality!

Operating Systems 21: Security (1) 44

Blue Pill – VM-based root kit
• Discovery and removal of root kits on OS level is possible

• But costly
• Objective: "undiscoverable" root kit
• "Blue Pill" tried to infect a PC with a root kit without requiring a

system reboot
• Exploits hardware virtualization technology of current CPUs
• No (significant) performance impact
• All devices, e.g. GPUs, continue to be fully available to the OS

• Undiscoverable, since the OS does not notice that it is now
running in a virtual machine

• …but there are still side effects that enable the detection of
root kits like this

Operating Systems 21: Security (1) 45

Conclusion
• Security gains increasing relevance in networked environments

• Extremely significant damages due to viruses, phishing, bot
nets, ransomware, ...

• Experienced computer users are not safe either!
• Security checks in code are essential!

• Automated tests cannot find all errors; manual audits still required
• Still, security problems are unavoidable

• Thus, system software has to be constantly updated
• Whack-a-mole game…

• "Zero day exploits", newly discovered security holes which are
not yet published (or fixed) are extremely dangerous

• Reaction time of system software vendors are in the range of
hours to months…

• Hardware is also increasingly problematic: "Meltdown" and "Spectre"

