® NTNU | bowegian niversity of

Operating Systems

Lecture 21: Security (1)

Michael Engel

Overview

* QOverview of security problems
* Permission management
« System software and security

« Software bugs
« Examples
« Conclusions

@ NTNU | sanetandrecnoiogy

Operating Systems 21: Security (1)

Security problems

* Definitions of relevant terms
« Safety

« protection against risks due to hardware and software
errors or failures

« Security

« protection of users and computers against intended
errors (attacks)

» Both topics are highly relevant for system software
« Today, we will only discuss security

« Exploitation of security holes
 malware
» social engineering

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

Operating system security

Someone...

differentiation of persons and groups of persons

* has to be deterred from doing...

using technical and organizational methods

* some...

limited only by our imagination

* unexpected things!

1) unauthorized reading of data (secrecy, confidentiality),
2) unauthorized writing of data (integrity),

3) working under a "false flag" (authenticity),

4) unauthorized use of resources (availability),

etc...

« Differentiation between

internal
and external attacks

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

Example: fake login screen

« Attacker starts a user program that simulates a login screen

« The unsuspecting user enters username and (secret) password
« Attacker program records user name and password
« Attacker program terminates the current shell

« Login session of the attacker is closed and the regular login
screen appears

« User assumes incorrectly
typed password

 Remedy: require the user to start
the login sequence using a key
combination that cannot be
intercepted by a user program

 e.g. CTRL-ALT-DEL in
Windows NT and following

0 Aation 4.0
with Microsoft Internet Explorer
This product is p d by US and i ional copyright laws as described in the About Box.

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1) 5

Malware example: viruses

 Program code inserted into another program, which can be replicated
this way

« Virus sleeps until the infected program is executed

« Start of the infected program results in virus reproduction

« Execution of the virus functionality can be time-controlled
« Sorts of viruses

» Boot sector virus: executed at system startup time

« Macro virus: in scriptable programs, e.g. Word, Excel

« Reproduced through documents (e.g. sent by email)!

« Executable program as virus
 Distribution through...

« exchange of storage media (USB memory sticks etc.)

« email attachments

* web pages

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

Example: social engineering

* Not a system software problem
* ...but very important
« (Gain access to information by exploiting human errors
* Phishing
» obtain data of an internet user using forged addresses (e.g.
with similar names/typos)

* e.g. by using forged emails from banks or government
Institutions

 Pharming
« manipulation of DNS requests by web browsers
* redirect accesses, e.g. to forged bank websites

* most users ignore browser warnings about invalid security
certificates

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

Types of malware

 Viruses
e programs inadvertently distributed by a user
 infect other programs
e ...and reproduce this way
- Worms
« do not wait for user actions to propagate to another computer
« actively try to invade new systems
« exploit security holes on target systems
« Trojan horses ("trojans")
« program disguised as useful application (or game...)

 in addition to the useful function, additional functionality is
provided without the user noticing, e.g. providing an attacker
with access to the local computer via internet

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

Types of malware (2)

* Root kit
 collection of software tools to...
« disguise future logins of an attacker
* hide processes and files
 is installed after a computer system is compromised
e can hide itself and its activities from the user

* e.g. by manipulating tools to display processes (ps),
directory contents (Is), network connections (netstat) ...

« ...or by manipulating system-wide shared libraries (libc)
« ...or directly by manipulating the OS kernel

« Often, malware uses a combination of these types

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

Permission management: objectives

* Protect stored information from
» breach of confidentiality
 theft of information
« unwanted manipulation (including encryption: ransomware)

 in all multi-user systems

e ...and every system connected to the Internet is in fact a
multi-user system!

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

10

Permission management: requirements

* All objects of a system must be uniquely and unforgeably
identifiable

« (external) users of a system must be uniquely and unforgeably
identifiable

> authentication

« Access to objects allowed only if the user has the required
permissions

« Access to objects should only be allowed using the appropriate
object management

« permissions must be stored in an unforgeable way; transfer
of permissions must only take place it a controlled way

* it must be possible to validate basic protection mechanisms
with low overhead

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1) "

Permission management: design principles

* Principle of least privilege

« Allow a person or software component only those
permissions that are required for the functionality to be
realized

« Standard case: deny permission
« Counterexample: Unix "root"
* Fail-safe defaults
« Example: newly installed server software
« Separation of duties
« Multiple conditions exist to allow an operation

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1) 12

Access matrix

* Elements of the matrix:
« Subjects (persons/users, processes)
* QObjects (data, devices, processes, memory, ...)
« Operations (read, write, delete, execute, ...)

* Question: Is operation(subject, object) permitted?

Objects

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

13

Basic model: file/process attributes

* Properties related to a user:
 for which user is the process being executed?
* which user is the owner of a file?

« which permissions does the owner of a file give to him/
herself and which permissions to other users?

* Permissions of a process when accessing a file
 Attributes of processes: user ID
 Attributes of files: owner ID

file 1 file 2 file 3
user 1

user 3
user 4

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1) 14

Access matrix variants

e Colums: ACL — Access Control Lists

« for every access to an object, the access permissions
are validated based on the identity of the requesting
subject (user)

 Rows: Capabilities

 for every access to an object a property is validated
which is owned by the subject and which can be passed
to other subjects on demand

* Rule-based: mandatory access conftrol
 rules are evaluated for every access

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1) 1

ACLs

Column-wise view of the access matrix:
Access Control List (ACL)

ACLs indicate for every object which subjects are allowed
to perform which operations on it

Objects

Subjects Permissions

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

16

ACLs

« ACLs can be configured by...

 subjects having an appropriate ACL entry granting this
permission

 the creator of the object (file)
« Example: Multics OS - triplet (user, group, permissions)

File
File
File
File
File

(Jan, *, RWX)

(Jan, system, RWX)

(Jan, *, RW-), (Els, staff, R--), (Maike, *, RW-)
(*, student, R--)

(Jelle, *, ---), (*, student, R--)

AWNREFPO

* Windows (starting with NT)
* object: allow, deny
« full control, modify, read&execute, ...

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

Unix access permissions

* Unix: simple access control lists
* Processes have a user ID and a group ID
« Files have an owner and a group

 Permissions are related to the
user (owner), group, and all others

file.tex File attributes:
rw- | r— | ——- rwx
others I—> execute: yes/no
group: staff | »write: yes/no
user: michael
> read: yes/no

@ N'TINU | Sorwegian University of Operating Systems 03: Challenges and tasks of OSs

Science and Technology

18

Problem: permission extensions

« Example — keep a high score list for a game
* High score list: /home/me/games/tetris/highscores
* Program: /home/me/bin/games/tetris
 Every player should be able to enter his/her own high score

1. all users have write permission to the high score list

» too many permissions (does not work)

* every user could arbitrarily manipulate the high score list
2. SetUID: only "me" has write permissions

* Tetris program has "setuid" permissions

* as soon as the Tetris program is executed, the process is
assigned the user ID of the owner of the executable program

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

19

Unix: users and processes

» Each process represents a user
* Process attributes:
« User ID (uid), group ID (gid)
« Effective uid (euid), effective gid (egid)
* Determine permissions of a process when accessing files
* Only a few highly privileged processes are allowed to change

their uid and gid

Process

* e.g. the login process

« After verifying the user’s password, the login uid: fritz

process sets uid, gid, euid and egid gid: students

» All other processes: children of login euid: fritz

 Child processes inherit the parent attributes egid: students

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

20

Unix solution: setuid mechanism

* File which contains trustworthy program code (e.g. Tetris) is given an
additional permission bit: setuid (s bit)

* shown as "s" instead of "x" for executable in directory listing
* there is also a setgid bit (rarely used)
« exec of setuid programs:

 executing process obtains the UID of the program owner as
effective UID

» precisely: the UID of the file containing the program

* Process execution performed using the permissions of this user as
long as the program is not terminated

 Contradicts the principle of least privilege

» Workaround: create special user for the application instead of
using "root"

* It is considered good programming style to return any setuid
permissions as soon as they are no longer required by a process

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

21

Example: high score list

Shell

uid: fritz

gid: students

euid: fritz

egid: students

Tetris

Highscores

--X

rwW-

r—— —— —

others

group: tetris

user: michael

others

group: tetris

user: michael

@ NTNU | sanetandrecnoiogy

Operating Systems 21: Security (1)

22

Example: high score list (2)

Shell

uid: fritz

euid: fritz
egid: students

: fork()
gid: students | +—

Shell

uid: fritz

gid: students

euid: fritz

egid: students

Tetris

Highscores

r-=s ——X

rw-

r—— —— —

others

group: tetris

others

group: tetris

user: michael

user: michael

@ NTNU | sanetandrecnoiogy

Operating Systems 21: Security (1)

23

Example: high score list (3)

@ NTNU

Shell Shell Tetris

uid: fritz uid: fritz uid: fritz

gid: students fork(), gid: students -.l?ext?ic; gid: students
euid: fritz euid: fritz euid: michael
egid: students egid: students egid: students

Tetris Highscores
r-s | —x | — rw- | r-— | ——
others others

group: tetris

group: tetris

user: michael

user: michael

Norwegian University of
Science and Technology

Operating Systems 21: Security (1)

24

setuid problems

« Extension of the permissions of a user exactly for the case of
using the given program

« "Owner" of the program trusts the user who is using the program
« Owner can be the administrator, but also normal users

* Problem: program bugs
« can result in significant permission extensions

* e.g. enable calling a shell (with inherited permissions of the
owner of the setuid process) from such a program

* Practical experience: still to many permissions granted!

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1) 25

Capabilities

* Row-wise view of the access matrix: Capability

 Capabilities indicate for each subject in which ways it is allowed
to access which objects

Objects

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

26

Example

 Basic implementation: Unix file descriptors
* Propagated using the fork system call

 Allows access to files without repeated validation of the Unix
access permissions

Process control block Table C_>f
open files

pid

file descriptors

v

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

Rule-based access matrix

 Mandatory Access Conftrol
» Concept:

* subjects and objects possess attributes ("labels")

* decision about granting access by evaluating rules
» Implemented in "security kernels”, e.g. SELinux

Objects

Evaluated for

every access
using a set of
given rules

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1) 28

System software and security

» Hardware-based protection
« MMU
* protection rings

« ...complemented by protection in the system software

 Exclusive control of the hardware by the OS
 Exclusive control of all processes
» Exclusive control of all resources
* Provisioning of
* identification mechanisms
« authentication mechanisms
* privilege separation
« cryptographic protection of information

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

29

Hardware-based protection: MMU

 Memory Management Unit

« Hardware component of the CPU that translates and controls
program accesses to memory

 Translation of the process view (virtual addresses) into the
hardware view (physical addresses)

« Main memory is partitioned into pages
* Protection by...

» only mapping the exact set of required main memory pages
into the virtual address space of a process

* isolation of the physical address spaces of different processes
» protection bits for each page, controlled at every access

* read/write/execute code

* access permitted in user mode/supervisor mode

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1) 30

Protection rings

* Privilege concept
« All code is executed in the context of a given protection ring
« Code running in ring 0 has access to all system resources
« User programs run in ring 3
* Rings 1 & 2 for OS-like code
* e.g. device drivers
* Rings restrict...

* the usable subset of processor
machine instructions

* e.g. disabling interrupts (sei/cli)
not permitted in rings > 0

» the accessible address range for
the process

« disabling of I/0 accesses

o Kernel-Mode
Ring 0

¢
Ring 1

Ring 2

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1) 31

Software-based protection

 |dentification mechanisms
 Unix: user and group identification
 Numeric value

 Translated into texts (user and group names) durch lookup in
/etc/passwd

* Resources are assigned an owner

» Superuser: uid =0
* Has all permissions possible in the system

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

32

Software-based protection (2)

authenticates to the

* Authentication mechanisms —

» Unix login user [© "\.—/

« Reads user name and password authenticates the

* Verification of the entered password with the one recorded in the
system

* Either by encrypting the entered password and comparison with
the recorded encrypted value

* Or by verification of a hash value

* The login process then starts the first user process (e.g., a shell)
with the uid and gid of this user

/sbhin/ /usr/bin/ /bin/bash
getty > login >

login: S
uid=root uid=root uid=user

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1) 33

Software-based protection (3)

 Cryptographic protection of information
 e.g. DES encryption of user passwords
* Originally in Unix stored in the file /etc/passwd
root:4t6f4rt3423:0:0:System Administrator:/var/root:/bin/sh

daemon:ge53r3rfrg:1:1:5ystem Services:/var/root:/usr/bin/false
me:1x3Fe5%gRd:1000:1000:Michael Engel:/home/me:/bin/bash

* Problem: encrypted passwords were readable for all users!
« ...could be decrypted using a "brute force" attack given enough
time
* readily available tools, e.g. "John the Ripper"
 Today: only user information stored in /etc/passwd
« Passwords are now stored separately in /etc/shadow!

-rw-r--r-- 1 root root 1353 May 28 22:43 /etc/passwd
-rwW-r----- 1 root shadow 901 May 28 22:43 /etc/shadow

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

34

Software bugs

* Trade-off: performance < security
« C, C++, Assembler: unmanaged languages
* Pointers, array bounds, value overflows
« C#, Java: managed languages
* Not usable for system software development!
e ...why?
 Managed languages also have security problems!
* Problems
« Buffer overflows
* Value range overflows
* Error statistics
* One error per 1000 lines of code on average
 Independent of the implementation language!

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

35

Value ranges

* Problem: integer numbers are represented as bit strings with a
limited number of bits

« Example: "char" data type in C
* Represented as signed 8 bit value

_ char a = 127;
 Value range: -27 ... +27 — 1 char b = 3
e...0or-128 ... +127 char result = a + b;
* The C code results in the following 01111111 (a)
calculation in binary: +00000011 (b)

10000010 (result
is negative!)

* Only the least significant 8 bits are significant
* thus the result = -126!

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1) 36

Value ranges (2)

 The following code results in problems:

char string[127] = "Hello World!\n"
char a 127,
char b 3;

char myfunc(char *string, char index) {
return string[index] ;

}

printf("%x", myfunc(string, a+b));

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

37

Heap overflow

* Heap: memory area for dynamically allocated data (e.g. via malloc)

 Buffer overflows in the heap can be problematic

 Memory ranges separately allocated with malloc can be
contiguous in main memory

 There are no checks for overflows

By passing incorrect sizes for data regions, an attacker can
overwrite other data on the heap

« Example: Microsoft JPEG GDI+ (MS04-028)
 Size values in JPEG image files were not controlled
* "Normal" images files contain valid values
* These do not result in erroneous behavior
* Manipulated image files contain invalid values
» Overwrite other data on the heap

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1) 38

Heap overflow (2)

#define BUFSIZE 16
#define OVERSIZE 8 /* overflow buf2 by OVERSIZE bytes */

int main(void) {
u long diff,;
char *bufl = malloc(BUFSIZE),
*buf2 = malloc(BUFSIZE) ;

diff = (u_long)buf2 - (u_long)bufl;
printf("bufl = %p, buf2 = %p, diff = Ox%x\n", bufl, buf2,

memset (buf2, 'A', BUFSIZE-1),;
buf2[BUFSIZE-1] = '\O"';

printf("before overflow: buf2 = %s\n", buf2);
memset (bufl, 'B', (u_int)(diff + OVERSIZE));
printf("after overflow: buf2 = %s\n", buf2);
return 0O;

}

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

diff);

39

Result...

* The value range is exceeded by 8 bytes

root /wOOw00/heap/examples/basic]# ./heapl
bufli = 0x804e000, buf2 = 0x804eff0, diff = OxffO0 bytes

before overflow: buf2 = AAAAAAAAAAAAAAA
after overflow: buf2 = BBBBBBBBAAAAAAA

* bufl exceeds its limit and arrives at the heap area in which
buf?2 is stored
 This heap area of buf2 still has valid contents

* Thus, the program does not terminate, but rather unexpectedly
manipulates the data stored in buf 2!

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1) 40

Unix Morris worm (sendmail)

* One of the first worms distributed over the Internet

 Written by a student of Cornell University, Robert Tappan Morris, and
activated on November 2, 1988, from a computer at the MIT

* From the MIT to disguise the real origin of the worm
 Today, Robert Tappan Morris is professor at the MIT! :-)

 Exploited a security hole in the sendmail system
« Buffer overflow in gets ()

* Written to determine the size of the Internet,
should infect each system only once

- ...but had a fatal bug in its replication function!
« 6000 Unix systems infected

» Cost of fixing damages estimated between
US$10 and US$100 million

» ...Morris was convicted to 3 years jail on
probation and a US$10.000 fine...

The Morris Internet Worm
code

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1)

Michelangelo virus

* First discovered in New Zealand in 1991
» Boot sector virus, infects e.g. MS-DOS systems

* Only uses BIOS functions, no DOS system calls
 Time-activated virus, active on March 6th
» Overwrites the first 100 sectors of the (first) hard disk with zeros
* Distribution using boot sectors of floppy disks

* Installed itself in the boot sector of the hard disk
* One of the first viruses broadly discussed in the media

« ...but its effects were spectacularly exaggerated ;-)

« Some commercial software was accidentally delivered on disks
with a boot sector virus

 Today: viruses on USB memory sticks, mobile phones with
USB interfaces, ...fresh from the factory!

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1) 42

Sony BMG root kit

 Software on copy protected CD-ROMs with Digital "Rights"
Management (DRM) technology

* Filtering driver for CD-ROM drives and IDE disk controllers to
control access to media

* Installed without informing the user or asking for approval
 Control over the use of data of Sony BMG

e ...on Windows systems
« Hidden from analysis using root kit functionality

* Does not appear in the installed software list of the Windows
control center and is not removable using uninstaller tools

* Does not only hide related files, directories, processes and registry
entries, but globally everything starting with the string sys

« Enables other malware to hide itself using this root kit functionality!

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1) 43

Blue Pill — VM-based root kit

 Discovery and removal of root kits on OS level is possible

 But costly
 Objective: "undiscoverable" root kit

* "Blue Pill" tried to infect a PC with a root kit without requiring a
system reboot
 Exploits hardware virtualization technology of current CPUs

* No (significant) performance impact
* All devices, e.g. GPUs, continue to be fully available to the OS

e Undiscoverable, since the OS does not notice that it is now
running in a virtual machine

 ...but there are still side effects that enable the detection of
root kits like this

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1) 44

Conclusion

« Security gains increasing relevance in networked environments

» Extremely significant damages due to viruses, phishing, bot
nets, ransomware, ...

« Experienced computer users are not safe either!
« Security checks in code are essential!
« Automated tests cannot find all errors; manual audits still required
« Still, security problems are unavoidable
* Thus, system software has to be constantly updated
» Whack-a-mole game...

- "Zero day exploits", newly discovered security holes which are
not yet published (or fixed) are extremely dangerous

* Reaction time of system software vendors are in the range of
hours to months...

« Hardware is also increasingly problematic: "Meltdown" and "Spectre"

B NTNU | sencand rechnoivsy Operating Systems 21: Security (1) 45

