B NTNU | sioncindrecnoivay

Operating Systems

Lecture 18: Cloud Operating Systems

Michael Engel

Cloud computing

« According to the US National Institute of Standards and
Technology, a Cloud has five properties:

2. High throughput
network access

_ = / pool

5. Measurable service

@ NTNU | sanetandrecnoiogy

3. Resource

4. Fast
adaptivity

_— Q 1. “Self service”

on demand

Operating Systems 18: Cloud, Unikernels, ...

Hardware virtualization

« ...enables the creation of multiple virtual machines on one
physical computer. Each virtual machine can have its own OS.

« Important foundation technology for Cloud computing and
server consolidation

* Technical basis: hypervisor / virtual machine monitor

Application processes Application
of the guest OS'’s processes of
: 7) the host OS
® 0 0 0] ® O 0 l
Windows Linux | GuestOS
Guest OS Guest OS Type 2 hypervisor () 9
Type 1 hypervisor Host Operating System

@ N'TNU | Sowegian Lniversity of Operating Systems 18: Cloud, Unikernels, ... 3

Science and Technology

Cloud service models &
X
- SaaS - Software-as-a-Service /\@& \q;b" Q'z»'g? (_;a"’c’
* Cloud service provider offers a .
complete application Applications -
« e.g. Office365, Gmail, Zoom ~ Data |
- Paa$S - Platform-as-a-Service Runtime environm. | | ¢\,
« Execution environment for Middleware ,
applications including the OS and Operating system

runtime environment (depending

_ Vi‘rtualization N
on the programming language) S)
« e.g. Engine Yard, Google App | d
Engine Storage | HW
« laaS - Infrastructure-as-a-Service Network
* (Virtual) hardware platform ¢ Admin. by customer
« e.g. Amazon EC2, Microsoft Azure | Cloud service

After an idea in Stallings’ “Operating Systems”

@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ... 4

Discussion: Cloud disadvantages

Cloud-Computing has a number of advantages, but can also
cause problems that must not be ignored...

- Data protection and privacy

 Where are the data of my users/customers located?
Which data protection laws apply in the respective
country? (= GDPR)

s the cloud service provider trustworthy?
* Vendor lock-in

« Can I retrieve my data (for a reasonable amount of
money) if | want to change the provider?
If yes, in which format?

« Quality of service
« Which guarantees are offered by the provider?

@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ...

Provisioning models

« Public Cloud B
o

* Cloud Service Provider (CSP) has
arbitrary customers

* Private Cloud ‘B ..‘ |
« A cloud infrastructure for a (large) o
company, which can use the company’s

own or rented resources.
> more control

+ Community Cloud aln

* Multiple customers with the same
requirements share a cloud infrastructure

+ Hybrid Cloud | N
« Mixed approach ‘Bg 0 e

@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ...

Comparison of provisioning models

« Stallings: "Operating Systems: Internals and Design Principles”

Private Community Public Hybrid
cloud cloud cloud cloud
Scalability restricted restricted very high very high
Data protection most secure very moderately very
Security option secure secure secure
low
Performance very good very good to medium good
s . : . medium
Reliability very high very high medium to high
Costs high medium low medium

@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ...

Application example / Requirements

(\ Cloud Service .)
. P ,
Provider (CSP) ' °°'°'newer
_ ___memory and compute
@ a8 ressources
——— 000 .
. : - -
] /|
' | |
Cloud Service : 4/
[
| |

Consumers (CSC)

‘---- -,

| |
\ L
| |
Portal . ;

» Secure access via
portal

» Function selection
(e.g. VM templates)

* Choice of a service

* Observation and

adaptation ﬂi]
B NTNU | SooncEanireanobey

* Provisioning of the
required resources

» Confirmation of a
service level
agreement (SLA)
and related costs @

» Use (CSC) and

observation (CSP)
 Management (CSP)

(migration,

redundancy, energy

extensibility, ...)

optimization,
3)

Operating Systems 18: Cloud, Unikernels, ... 8

General architecture of a cloud OS

 All resources are virtualized — laaS is basis of all services

APl and GUI |
Databases and object storage Management and orchestration

* Block based memory * Links all functionality

* File-based memory (NFS, SMB, ...) * Control of VM life cycles
Cloud * Object storage (distr.. key/value store) * Authorization
0S |

Server administratiion | = Storage management Network management

* Virt. CPUs/memory * VM images * Bandwidth reservation

* Accelerators (GPU, ...) * Backup, snapshots * Virtual networks

* Int./ext. storage | * Priv. Storagefor VMs | | * Adress management

Hypervisor technology

PhySical Standard I Standard - Standard
infrastructure rack server | | mass storage network switches

(DAS, NAS, SAN)

@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ...

Strategic decisions

« Where to place the VMs? When should they be migrated?
 How to minimize SLA violations? How much overbooking?
* Does it make sense to release and switch off single|computers?

Different strategies are possible:

Scheduler Migra- Violations Penalties | Costs Profit Margln
tions (in %)
CPU [RAM | UT
FF 28.326 12 370 | 3.350 | 87.792,85 | 31.537,03 | -58.523,54 | -96,2
HPGBF 5.355 | 401 212 60 | 90.558,46 | 30.381,79 | -60.133,91 | -98,9
HPGOP 2372 | 114 101 33 [30.942,97 | 31.093,17 | -1.229,80 -2,0
HPGWF 3.705 49 141 0 | 24.760,00 | 30.781,68 | 5.264,65 8,7
MMBF 1111 6 69 40 [10.516,92 | 31.350,98 | 18.938,43 31,1
MMOP 825 2 34 7| 4.934,46 | 32.066,84 | 23.805,03 39,1
MMWF 890 2 34 0 | 4.400,00 | 31.736,97 | 24.669,36 40,6
MMWF + LB 871 3 26 0| 3.600,00 | 32.326,96 | 24.879,37 41,0
Evaluation of different VM configurations (initial distribution
according to RAM resources) for the BitBrains RnD trace Source:

(month 1) with 500 VMs

@ NTNU

Norwegian University of
Science and Technology

Ph.D. thesis of A. Kohne,
“SLA-basierte VM-Scheduling-
Verfahren fur Cloud-Foderationen’

Operating Systems 18: Cloud, Unikernels, ... 10

Example: OpenStack

* QOpen source cloud OS: www.openstack.org

OPENSTACK

OPENSTACK-USER] WEB FRONTEND

& sk Horizon

4= APIPROXIES

EC2API

OpenStackClient

og WORKLOAD PROVISIONING C APPLICATION LIFECYCLE

4 ORCHESTRATION

Python SDK
Magnum Trove Murano Freezer Heat Mistral Aodh
Sahara Solum Masakari Senlin Zaqgar Blazar
== COMPUTE
Nova Zun Qinling

OPENSTACK-ADJACENTENABLERS

— 1llill CONTAINER SERVICES — -3{6 NETWORKING fl HARDWARE LIFECYCLE £ storacE
Kuryr | _son | | DN | | ossecT N BLOCK |
Neutron Octavia Designate Ironic Cyborg Swift Cinder Manila
$8INFV
"
‘ Tacker] @B SHARED SERVICES
‘ Keystone Placement Glance Barbican Searchlight Karbor ’

OPENSTACK-LIFECYCLEMANAGEMENT

Ij DEPLOYMENT / LIFECYCLE TOOLS

Kolla-Ansible OpenStack-Charms TripleO Bifrost Kayobe
OpenStack-Helm OpenStack-Ansible OpenStack-Chef

Bold represents Core Functionality
Version 2019.10.01

@ NTNU

Norwegian University of
Science and Technology

RPM Puppet
Containers (LOCI, Kolla)

— {9 PACKAGING RECIPES FOR...

Operating Systems 18: Cloud, Unikernels,

OPENSTACK-OPERATIONS

— (@) MONITORING TOOLS ——
Ceilometer

Monasca Panko

~ @ opTIMIZATION / POLICY TOOLS -

Watcher Vitrage
Congress Rally

~ (alil) BILLING / BUSINESS LOGIC —

CloudKitty

@@ MULTI-REGION TOOLS

Tricircle

11

Relevance and use of virtualization

« Enforces strict adherence to a layer structure through control
and intervention possibilities for resource accesses by a VM

 Basis for...

X DX X X ; Y
A A | A | A XandY are
——— | E R types of
| | : RAM, disks,
X x| Px x| X /O devices
Multiplexing @ Aggregation | Emulation Source: [1]
e.g. "virtual memory” e.g. “logical volumes” e.g. "NES emulator”

« This construction principle can be replicated on different layers
and for different resources

@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ... 12

Container base virtualization

or simply containers

« The OS kernel is Container 1 Container 2
virtualized App. 1 App. 2 App.3 App.4 App.5 App.6
« Containers share 4 4

Virt. 0SS ~ Virt. 0SS

J
a kernel
» Libraries and

system processes A

can be different Operating System §

« The virtualization
component takes care of...

« Separate views, e.g. each container sees only its "own"
processes

* Resource partitioning, e.g. CPU time
« Efficient sharing, e.g. avoid duplication of files

@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ... 13

Example: Linux container support

Integrated in the Linux kernel
« Container solutions only provide management tasks
Separate views: Name spaces per task

e ...for computer names (“UTS”), processes (“PID”), mount
points (“mount”), network devices and configuration
(“network™), IPC objects (“IPC”), control groups (“Cgroup”)
and system time (“Time”)

Resource partitioning: Control groups (cgroups)

« Container shares of CPU time, memory and I/O bandwidth

« Configuration interface: pseudo file system cgroupfs

Efficient sharing (of files): Overlay FS overlay fs (pseudo) | View

* Overlay of directory trees upper fs (changes) l
ot lower fs (read-only)

shar

>

@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ... 14

Hardware virtualization

* A complete computer (CPU, memory, I/O devices) is virtualized:

vVM 1 /Management VM 2
App. 1 App. 2| App. 3 App. 4

 GuestOS1 | GuestOS2

A
Virtualization'
A

A or-
Virt. HW X | m

VM 1 VM 2
App. 1 App. 2 App.3 App. 4| App.5 Mgnt
A A A A A A

GuestOS1 = Guest OS2

SVire HW X] Virc AW X]

| Operating System

TType-1 hypervisors provide virtual
machines without the support of an
operating system (directly on the

2 Type-2 hypervisors work on top of a
"host operating system”.
They can use its capabilities, e.g. virtual

hardware, "bare metal") memory
@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ... 15

CPU virtualization (1)

* Most simple approach: CPU emulation (+ multiplexing)

* Interpretation or Just-in-time translation (JIT) of the
instructions of the emulated processor

 Examples: Bochs, QEMU, MAME

* Imitates an arbitrary CPU Y with the help of a CPU X

* Problem: slow execution speed

FAST/SLOW: with/without code optimization

Execution Mode T1FAST.EXE time T1SLOW.EXE time | -
Native 0.26 0.26

QEMU 0.9.0 10.5 12

Bochs 2.3.5 25 31

Bochs 2.3.7 8 10

Table 3.2: Execution time in seconds of Win32 test program

Conclusion:
avoid CPU emulation where possible

static int foo(int 1) {

}

int main(void) {

for(i=0: i1<100000000: i++)

return(i+1l) ;

. <start timer>

t += foo(1);
. <stop timer>

@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ... 16

CPU virtualization (2)

Efficient approach: CPU multiplexing (CPU X1, ..., Xx on X)
Desired properties ("virtualization criteria")
 Equivalence: a VM behaves identical to the real machine
« Security: a VM is isolated. The hypervisor has full control

« Performance: virtual CPUs are not significantly slower than the
real one

Question: which architectures are "virtualizable" in this way?
Answer (Popek and Goldberg, 1974 [3]):

« CPUs have "sensitive" instructions which depend on the
privileged mode of the CPU (user/supervisor mode, memory
mapping, ...) or switch its mode

« All sensitive instructions must generate a trap when executed in
user mode. This allows the hypervisor to emulate the instruction

The "rest" works like a regular OS: VM scheduling

@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ...

17

Memory virtualization (1)

« Problem: additional memory mapping layer

VM 1
Guest Virtual Memory———— AEE 1 AEE 2
A)
Guest OS 1
Guest-Physical Memory —

Virt. HW X

n
|
|
n
|
ln
'|
\J

Host-Physical Memory —

Hardware X

Guest operating systems assume that they have complete control over the
hardware. They use arbitrary page frames. Without the additional mapping
layer, conflicts with other guest OSes could occur!

@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ... 18

Memory virtualization (2)

« Solution 1: Shadow page tables
* Require no special hardware virtualization support

* ldea: —eass. App. 1
1. Do not use the guest OS page tables | |
2. Hypervisor keeps a shadow page table Guest OS5 oron

for each guest page table
3. Shadow table must be kept up to date!

» Version 1: intercept and interpret
all accesses to memory which
stores part of a page table

* Version 2: ignore changes, update
tables when a page fault occurs

» Both variants result in many traps to the hypervisor >~ overhead

3)
B B

Hypervisor

Shadow page tables are expensive. Lower costs are
possible using paravirtualization or hardware support

@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ... 19

Memory virtualization (3)

« Solution 2: Nested page tables (AMD,; Intel: "extended page tables"
* l|dea:

« Hardware is responsible for the complete sasis| ApP. 1
memory mapping
" Guest OS-Srees
« Guest OS can change "its" page table » Sw'thwwaps\
as required D physical guast memory

 Page table walk is more expensive

— greater relevance of the TLB
— Physical host memoryr

« Page tables have
tree structure

« Pointers to tables are _Virtual address

physical guest addresses z A A Y]

* Translation to physical
host addresses required
(here: 4 translations!)

Hypervisor

Base register

@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ... 20

Memory virtualization (4)

More approaches...

« Ballooning: "Trick" for dynamic allocation of memory to VMs
« Small driver module communicates with the hypervisor
« Can reserve memory of the OS kernel on demand
« This memory can then be distributed to other VMs

« Deduplication: Detection and avoidance of duplicate page contents
between VMs. Saves main memory, e.g. between identical guest OSes

VM migration

« Complete memory contents of a VM moved to other host system

* Optimization: Transfer of pages while the VM is running

* Recent changes are monitored using the dirty bit in the page table
* VM replication

 Memory state changes are periodically transmitted to a backup host.
Backup VM can replace one on a crashed/failed system quickly

@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ... 21

I/O virtualization (1)

« Simple approach: I/O emulation (+ multiplexing)

» Accesses to I/O device registers are privileged operations or

can be intercepted by the hypervisor using the MMU ("trap
and emulate")

« Emulation of arbitrary 1/0O devices Y using |/O device X

* e.g.in Oracle VirtualBox: PS/2 mouse/keyboard; IDE,
SATA, SCSI, ... hard disk; SVGA graphics card; different
AMD and Intel network controllers; USB host controller;
AC'97, Intel HD or Soundblaster 16 sound cards

« Problem: I/0O throughput

« Even simple I/O operations require hundreds or thousands
of 1/0O register accesses!

I/O emulation is expensive. Lower costs are (again)
possible using paravirtualization or hardware support

@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ...

22

I/O virtualization (2)

« Alternative: do not use multiplexing — device passthrough
* Adevice is exclusively assigned to exactly one VM
« Arbitrary register accesses are permitted (without causing a trap)
* Problems:
« DMA addresses are physical host addresses not known to the VM
« This could be used to violate the VM isolation
 Interrupts could be triggered on the "wrong" CPU
« Solution: /0 MMU
« Hardware extension implemented in CPU or mainboard chip set
« DMA uses an address mapping using tables
« Acceleration using separate TLBs

« Interrupt remapping is able to change the interrupt number and
destination CPU

@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ... 23

I/O virtualization (3)

Alternative 2: PCle single root I/O virtualization (SR-IOV)
Hardware mechanism: One device appears as multiple virtual ones

« Multiple I/O register sets,
multiple interrupt configurations, ... GuestOS1 GuestOS2 GuestOS3
Hypervisor maps one of these devices

VFdriverJ \ VFdriver] ‘ VFdriver]

to a VM and does not have to | \))

T—

interfere further

Possible problem:

 Hardware takes care of the AL

. ey . . Function
prioritization of VMS itself SR-IOV hardware component
* e.g. round robin

« Conflicts with priorities of the
hypervisor are possible

@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ... 24

Conclusion

« Virtualization is an important architectural concept recurring in
the system software stack

« Transparent: Multiplexing, aggregation, emulation

« Hardware virtualization (according to Popek/Goldberg)
* Replaces inflexible connection of hardware and software
* enables e.g. migration and replication of VMs at runtime
« Technical basis for cloud computing

» Operating systems for clouds

« Well-known functionality:
Resource management and abstractions

e ...implemented on a higher layer

@ NTNU | S oy Operating Systems 18: Cloud, Unikernels, ... 25

References

[1] Edouard Bugnion, Jason Nieh, and Dan Tsafrir. 2017. Hardware and Software
Support for Virtualization. Morgan & Claypool Publishers, 2017.

[2] MihocCka, Darek, Stanislav Shwartsman and Intel Corp. Virtualization Without
Direct Execution or Jitting: Designing a Portable Virtual Machine Infrastructure.”, 2008.

[3] Gerald J. Popek and Robert P. Goldberg. 1974. Formal requirements for
virtualizable third generation architectures. Commun. ACM 17, 7 (July 1974), 412—-
421.DOl:https://doi.org/10.1145/361011.361073

@ N'TNU | Sowegian Lniversity of Operating Systems 18: Cloud, Unikernels, ... 26

Science and Technology

