
Operating Systems
Lecture 17: Virtual machines and microkernels

Michael Engel

Operating Systems 17: Virtual machines and microkernels 2

Software architecture
• Definition:

• Intuitive view: "boxes and arrows" 😀
• Does not describe the detailed design
• Focus on the relation between the requirements and the system

that is to be constructed

2

The basic organization of a system, expressed
through its components, their relations to each other
and the environment as well as the principles which
define the design and evolution of the system.

Source: Gesellschaft für Informatik e.V. (https://gi.de/informatiklexikon/software-architektur)

Operating Systems 17: Virtual machines and microkernels 3

Different operating system architectures
• Isolation
• Interaction mechanisms
• Interrupt handling mechanisms

• Adaptability
• Portability, modifications

• Extensibility
• New functions and services

• Robustness
• Behavior in the presence of errors

• Performance

3

Technical
criteria

(principles)

Observable
criteria

(requirements)

Operating Systems 17: Virtual machines and microkernels 4

Early operating systems
• The first computers had no operating system at all

• Every program had to control all hardware on its own
• Systems were running batch processing jobs controlled by

an operator
• Single tasking, punch card operated

• Peripheral devices were rather simple
• Tape drives, punch card readers/writers and printers

connected over serial lines
• Replication of code to control devices in every application

program
• Waste of development and compile time as well as storage
• Error prone

4

Operating Systems 17: Virtual machines and microkernels 5

Library operating systems
• Collect frequently used functions to control devices in software

libraries which can be used by all programs
• Call system functions like regular program functions

• Library could remain in the computer’s main memory
• Reduced program loading times, "Resident Monitor"

• Library functions were documented and tested
• Reduced development overhead for application

programmers

• Errors could be fixed centrally
• Improved reliability

5

Operating Systems 17: Virtual machines and microkernels 6

Library operating systems

6

Library
• character I/O
• block I/O
• memory management
• …

Hardware

Application

…can also
access the
hardware
directly…

sy
st

em
 m

od
e

Operating Systems 17: Virtual machines and microkernels 7

Library OS: Evaluation
• Isolation

• Ideal – single tasking system – but high time overhead to switch tasks
• Interaction mechanisms

• Direct (function calls)
• Interrupt handling mechanisms

• Sometimes interrupts were not in use → polling
• Adaptability

• Separate libraries for each hardware architecture, no standards
• Extensibility

• Depends on the library structure: global structures, "spaghetti code"
• Robustness

• Direct control of all hardware: errors → system halt
• Performance

• Very high due to direct operations on the hardware without privilege
mechanisms

Operating Systems 17: Virtual machines and microkernels 8

Library OS: Discussion
• Expensive hardware could only be used "productive" for a

small fraction of the time
• High overhead to switch tasks
• Waiting for I/O unnecessarily wastes time, since only one

"process" runs on the system

• Results took a lot of time
• Waiting queue, batch processing

• No interactivity
• System run by an operator, no direct access to the hardware
• Execution of a program could not be controlled at runtime

Operating Systems 17: Virtual machines and microkernels 9

Monolithic systems
• Management system for computer hardware

• Standardized accounting of system resources
• Complete control of hard- and software

• Applications run under system control now
• Systems with multiple processes are feasible now:

multiprogramming
• Introduction of a privilege system

• System mode and application mode
• Distinction and switch between modes hardware-supported

Direct hardware access only in system mode
• System functions called using special mechanisms

(software traps)
• Requires context switching and saving

Operating Systems 17: Virtual machines and microkernels 10

Monolithic operating systems

Monolithic kernel

Hardware

Appli-
cation

Appli-
cation

Appli-
cation

Appli-
cation

IRQ Char
I/O

Block
I/O

Memory
mgmt.

Sched
uler

File
system

us
er

 m
od

e
sy

st
em

 m
od

e

Operating Systems 17: Virtual machines and microkernels 11

Monolithic systems: OS/360
• One of the first monolithic systems: IBM OS/360, 1966
• Objective: common batch processing OS for all IBM mainframes

• Performance and memory differ by several orders of magnitude
• System available in different configurations:

• PCP (primary control program): single process, small systems
• MFT (multiprogramming with fixed number of tasks): mid-scale

systems (256 kB RAM! 😀), fixed partitioning of memory between
processes, fixed number of tasks

• MVT (multiprogramming with variable number of tasks): high end
systems, swapping, optional time sharing option (TSO) for interactive
use

• Innovative properties:
• Hierarchical file system
• Processes can control sub-processes
• MFT and MVT are compatible (API and ABI)

IBM z/OS still
supports
OS/360
applications
today

Operating Systems 17: Virtual machines and microkernels 12

Monolithic systems: OS/360
• Problems in the domain of operating system development

• Fred Brooks’ "The Mythical Man-Month" described the problems that
occurred during the development of OS/360 [1]

• Conceptual integrity
• Separation of architecture and implementation was difficult.

Developers love to exploit all technical capabilities of a system
→ reduces comprehensibility and developer productivity

• "Second System Effect"
• Developers wanted to fix all errors of the previous system and add

all missing features → never finished
• Dependencies between components of the system were too complex

• Starting with a certain size of the code, errors are unavoidable!

• Developments in software technology were driven by developments in
operating systems

Operating Systems 17: Virtual machines and microkernels 13

Monolithic systems: Unix
• Unix was developed for systems with rather limited resources

(AT&T Bell Labs)
• Kernel size in 1979 (7th Edition Unix, PDP11): ca. 10,000 lines

of code (straightforward, easy to handle!), compiled ca. 50 kB
• Originally implemented by 2-3 developers

• Introduction of simple abstractions
• Every object in the system can be represented as a file
• Files are simple unformatted streams of bytes
• Complex functionality can be realized by combining simple

system programs (shell pipelines)
• New objective of system development: portability

• Simple adaptability of the system to different hardware
• Development of Unix in C – designed to be a domain specific

language to develop operating systems

Operating Systems 17: Virtual machines and microkernels 14

Monolithic systems: Unix
• Further development of Unix was not predictable

• Systems with large address spaces (VAX, RISC systems)
• The Unix kernel also grew in size (System III, System V,

BSD) – without significant structural changes
• Very complex subsystems were integrated along the way

• TCP/IP was about as complex as the rest of the kernel

• Linux was modelled after the structure of System V Unix

• Impact in academia: "Open Source" policy of Bell Labs
• Weaknesses of Unix lead to new research questions
• However, many projects (e.g. Mach) tried to remain

compatible to Unix

Operating Systems 17: Virtual machines and microkernels 15

Monolithic systems: Evaluation
• Isolation

• No isolation of components in kernel mode, only between application
processes

• Interaction mechanisms
• Direct function calls (in the kernel), Traps (application – kernel)

• Interrupt handling mechanisms
• Direct handling of hardware interrupts by IRQ handlers

• Adaptability
• Changes in one component influence other components

• Extensibility
• Originally: recompilation required; today: kernel module system

• Robustness
• Bad – an error in one component "kills" the complete system

• Performance
• High – few copy operations required, since all kernel components use the

same address space. System calls require a trap, however

Operating Systems 17: Virtual machines and microkernels 16

Monolithic systems: Discussion
• Complex monolithic kernels are difficult to work with

• Adding or changing functionality often involves more modules
than the developer intended

• Shared address space
• Security problems in one component (e.g. buffer overflows)

compromise the complete system
• Many components unnecessarily run in system mode

• Reduced number of options for synchronization
• Often only a "Big Kernel Lock", i.e. only a single process, can

run in kernel mode at a time, all others have to wait
• This is especially bad for the performance of multiprocessor

systems

Operating Systems 17: Virtual machines and microkernels 17

Microkernel systems
• Objective: reduction of the Trusted Computing Base (TCB) size

• Minimize functionality running in the privileged mode of the
CPU

• Isolate all other components against each other in non
privileged mode

• Principle of least privilege
• System functions are only allowed to have the privileges

required to complete their task
• System calls and communication between processes using

message passing (IPC – inter process communication)
• Reduced functionality in the microkernel

• Lower code size (10,000 lines of C++ code in L4 vs. 5.5 million
lines of C in Linux without device drivers)

• Allows for formal verification of the microkernel (seL4)

Operating Systems 17: Virtual machines and microkernels 18

First-generation microkernels
• Example: CMU Mach [2]
• Initial idea: Separation of the features of (BSD) Unix into features

requiring execution in the privileged mode of a CPU and all other
features

• Objective: Creation of an extremely portable system
• Improvements to Unix concepts

• New communication mechanisms using IPC and ports
• Ports are secure IPC communication channels
• IPC is optionally network transparent:

support for distributed systems
• Parallel activities inside of a single process address space

• Support for threads → processes are now "containers" for
threads

• Better support for multiprocessor systems

Operating Systems 17: Virtual machines and microkernels 19

First-generation microkernels

Microkernel

Hardware

Single
server

Memory
server

FS
server

Net
server

IPC IPC
permis. MemorySched

uler
Device
drivers

Appli-
cation

Appli-
cation

e.g. BSD
Unix on
top of
Mach

multi-server OS

us
er

 m
od

e
sy

st
em

 m
od

e

Operating Systems 17: Virtual machines and microkernels 20

First-generation microkernels
• Problems of Mach:

• High overhead of IPC operations
• System calls are a factor of 10 slower compared to a monolithic

kernels
• Sub-optimal decisions about which components should be implemented

in the microkernel: large code base
• Device drivers and permission management for IPC in the microkernel

• Resulted in a bad reputation of microkernels in general
• Practical usability was questioned

• The microkernel idea was dead in the mid 1990s
• Practical use of Mach mostly in hybrid systems

• Separately developed components for microkernel and server
• Colocation of the components in one address space, replacing of in-

kernel IPC by function calls
• Apple macOS: Mach 3 microkernel base + FreeBSD components

Operating Systems 17: Virtual machines and microkernels 21

Second-generation microkernels
• Objective: Remove disadvantages of first generation microkernels

• Optimization of IPC operations
• Jochen Liedtke: L4 (1996) [3]

• A concept is tolerated inside of a microkernel only if moving it
outside of the kernel would prevent the implementation of
functionality required in the system

• Four basic mechanisms:
• Abstraction of address spaces
• A model for threads
• Synchronous communication between threads
• Scheduling

• Much of the functionality implemented in kernel mode in first
generation microkernels now runs in user mode

• e.g. checking of IPC communication permissions

Operating Systems 17: Virtual machines and microkernels 22

Second-generation microkernels

Microkernel

Hardware

Single
server

Memory
server

FS
server

Net
server

IPC

IPC
permis.

MemorySched
uler

Device
drivers

Appli-
cation

Appli-
cation

multi-server OS

us
er

 m
od

e
sy

st
em

 m
od

e

Operating Systems 17: Virtual machines and microkernels 23

Microkernel OS: Evaluation
• Isolation

• Very good – separate address spaces for all components
• Interaction mechanisms

• Synchronous IPC
• Interrupt handling mechanisms

• The microkernel translates interrupts into IPC messages
• Adaptability

• Originally hard to adapt – x86 assembler code, today in C/C++
• Extensibility

• Very good and simple as components in user mode
• Robustness

• Good – but dependent on the robustness of user mode components
• Performance

• In general depending on the IPC performance

Operating Systems 17: Virtual machines and microkernels 24

Exokernel OS: Even smaller…
• Idea to simplify the OS even further [4]:

• The lowest system software layers does not implement
strategies or abstractions and does also not virtualize
resources

• One single task: resource partitioning
• Every application is assigned its own set of resources
• The assignment is enforced by the exokernel
• Everything else is implemented according to demand

using application-specific library operating systems
inside of resource containers

• Problem: Library operating systems are specific to the respective
exokernel

Operating Systems 17: Virtual machines and microkernels 25

Virtualization
• Objective: Isolation and multiplexing of resources below the

operating system layer [5]
• Simultaneous use of multiple guest operating systems

• Virtual machines (VMs) on system level virtualize hardware
resources such as:

• Processor(s), main memory and mass storage resources,
peripheral devices

• A virtual machine monitor (VMM) or hypervisor is the
software component that provides the virtual machine
abstraction

Operating Systems 17: Virtual machines and microkernels 26

Virtualization: IBM VM
• IBM S/360 mainframes: many different operating systems

• DOS/360, MVS: batch processing library operating systems
• OS/360+TSO: Interactive multi user system
• Customer-specific extensions

• Problem: How to use all systems simultaneously?
• Hardware was expensive (millions of US$)
• OS expect to have control over the complete hardware
→ This illusion has to be maintained for every OS

• Development of the first system virtualisation "VM" as a
combination of emulation and hardware support

• Enabled simultaneous operation of batch processing and
interactive operating systems

Operating Systems 17: Virtual machines and microkernels 27

Virtualization with a type 1 hypervisor

Hypervisor

Hardware

Management
console

Guest
OS1

Virt.
network MemoryVM

sched.

Appli-
cation

sy
st

em
 m

od
e?

sy
st

em
 m

od
e

Device
drivers

virt. hardware

Guest
OS2

Appli-
cation

virt. hardware

us
er

 m
od

e

VM1 VM2

Operating Systems 17: Virtual machines and microkernels 28

Hardware-supported virtualization
• Example x86: Privileged instructions in ring 0 can be caught

• Intel "Vanderpool" (Intel VT-x), AMD "Pacifica" (AMD-V)
• Additional logical privilege mode: often called "ring -1"

• Guest OS kernel runs in ring 0 as before
• "Critical" instructions in ring 0:

• Trap to the hypervisor
• The hypervisor emulates critical instructions
• or stops the OS using them (if not permitted)

• Allows to use multiple completely unchanged OS instances on a
single hardware system at the same time

• Peripheral devices of the respective VMs still have to be
emulated, since the virtualized systems are not aware of the
presence of the other OSes

Operating Systems 17: Virtual machines and microkernels 29

Paravirtualization
• Applications of the virtualized OS run unchanged, but the

virtualized OS itself requires a special kernel
• Guest kernel runs (on x86) in a protection ring > 0 (e.g. ring 3)

• not in system mode
• Realization:

• "critical" instructions (interrupt handling, memory management,
etc.) in the guest kernel are replaced by hypercalls (explicit
calls to the hypervisor)

• VMware approach: kernel binary code is adapted when
loading the guest OS

• Xen approach: modification of the OS source code
• Performance improvement: Hypercalls also used to access

peripherals and the network – no more slow hardware
emulation required

Operating Systems 17: Virtual machines and microkernels 30

Virtualization: Evaluation
• Isolation

• Very good – but coarse granularity (between VMs)
• Interaction mechanisms

• Communication between VMs only via TCP/IP (virtual network cards!)
• Interrupt handling mechanisms

• Forwarding of IRQs to guest kernel inside of the VM (simulated hardware
interrupts)

• Adaptability
• Specific adaptation for a CPU type required, paravirtualization has a lot of

overhead
• Extensibility

• Difficult – not commonly available in VMMs
• Robustness

• Good – but coarse granularity (whole VMs affected by crashes)
• Performance

• Good – 5-10% lower compared to direct execution on the same hardware

Operating Systems 17: Virtual machines and microkernels 31

Libraries of OS functionality
• "Unikernels" are used to efficiently execute a single application inside

of a virtual machine
• mirageOS, Mini-OS, Unikraft, …

• Example: Utah OSKit [6]
• "best of" of different

operating system
components

• Interfaces adapted
to conform to a
single standard

• Language support
(interface generator)
enables easy
integration of
components

Operating Systems 17: Virtual machines and microkernels 32

OS architectures: Conclusion
• OS architectures are still a current area of research

• "old" technologies such as virtualization find new applications
today, e.g. in cloud computing

• Hardware and applications change all the time, e.g.
• Energy awareness (energy harvesting)
• Scalability (multi-/manycore processors)
• Heterogeneity (ARM big.LITTLE, GPUs, ...)
• Adaptability (mobile systems, resource constrained

systems)
• Persistent main memories (TI FRAM, Intel DCPMMs)

• Compatibility requirements and high development costs prevent
the fast acceptance of new developments

• Virtualization is used as compatibility layer

Operating Systems 17: Virtual machines and microkernels 33

References
[1] Brooks, Frederick P. Jr. (1975).
 The Mythical Man-Month.
 Addison-Wesley. ISBN 0-201-00650-2.
[2] Accetta, M., Baron, R., Bolosky, W., Golub, D., Rashid, R., Tevanian, A., & Young, M.
 (1986).
 Mach: A new kernel foundation for UNIX development.
 USENIX Summer conference 1986
[3] Liedtke, J. (1996).
 Toward real microkernels. Communications of the ACM, 39(9), 70-77.
[4] Engler, D. R., Kaashoek, M. F., & O'Toole Jr, J. (1995).
 Exokernel: An operating system architecture for application-level
 resource management.
 ACM SIGOPS Operating Systems Review, 29(5), 251-266.
[5] Popek, G. J., & Goldberg, R. P. (1974).
 Formal requirements for virtualizable third generation architectures.
 Communications of the ACM, 17(7), 412-421.
[6] Ford, B., Back, G., Benson, G., Lepreau, J., Lin, A., & Shivers, O. (1997, October).
 The Flux OSKit: A substrate for kernel and language research.
 In Proceedings of the sixteenth ACM symposium on Operating systems principles

