
Operating Systems
Lecture 15: File systems

Michael Engel

Operating Systems 15: File system 2

Resources again
• So far we considered:

• CPU
• main memory
• I/O devices

• block-oriented devices
• Today: background storage

Processor
(CPU)

main memory
(RAM)

I/O
interfaces

I/O
devices

secon-
dary

storage

2

Operating Systems 15: File system 3

Background storage

Rotation axisTracks

Sector
Read/write

heads

Hard disk with
6 surfaces

File systems enable
permanent storage of
large amounts of data

The operating
system provides
a logical view
to applications
and has to
implement this
efficiently

mapping

/

usr home

bin local me olav tor

os.pdf

Logical view
Directory

File

Physical storage

Operating Systems 15: File system 4

The file abstraction
• Unix principle: "everything is a file"

• more precisely: every resource in the system can be
accessed using a name mapped into a directory hierarchy

• access to the resource takes place using the standard Unix
system calls for file access

• file permissions are used to control access to the resource
• Examples:

• regular files and directories
• special files for devices, symbolic links, named pipes
• virtual files for process and system information

• Not completely consistent in Unix, but e.g. in the Plan 9 OS:
• network connections and protocols
• access to the graphics frame buffer

Operating Systems 15: File system 5

• Files are identified by per process file descriptors in the OS
• positive integer number, can be reassigned

• The Unix file access API consists of four simple system calls:
• int open(const char *path, int oflag, ...);

• Attempts to open the file with the given path name and
options for accessing (read only, read/write etc.)

• Returns a file descriptor (fd) refering to the file on success
• ssize_t read(int fd, void *buf, size_t nbyte);
• ssize_t write(int fd, const void *buf, size_t nbyte);

• Read (write) nbyte bytes from (to) file fd into (from) the
memory starting at user space memory address buf

• int close(int fildes);

• Closes the file: flushes buffers and invalidates file descriptor

Accessing files

Operating Systems 15: File system 6

The Unix virtual file system (VFS) switch
• System-wide name space for files

…and make files available
over the network

Ethernet
controller

pseudo file systems
can "simulate"
arbitrary files

system
information

process
managementvirtual file system switch

ext4 xfs NFS

firefox
[pid 4356]

httpd
[9643]

gcc
[937]application

processes

OS kernel

hardware

all file systems
must implement

the same
interface!

pseudo file systems
can "simulate"
arbitrary files

/ /srv
/home

/proc

/sys

open("/srv/www/index.html", O_RDONLY)

Operating Systems 15: File system 7

Virtual file system: mounting
System Call:

int mount(const char *source, const char
 *target, const char *filesystemtype,
 unsigned long mountflags, const void *data);

Attaches ("mounts") a file system to the given directory
in the global directory tree

System Call:

int umount(const char *target);

Removes the attachment. Note: umount, not unmount!

mount("/dev/sda1","/srv","xfs"…)

Using both system calls
requires system administrator

privileges!

When the system is booted, all
filesystems listed in /etc/fstab

are automatically mounted

Operating Systems 15: File system 8

File storage
• In most cases, files require multiple blocks of storage on disk

• We simply view a disk as a large array of blocks
• Each block has an identical small size, e.g. 512 bytes
• This is already an abstraction from the heads, tracks

and sectors of a real disk drive
• Which of the blocks are used to store a file?

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 …..

512 bytes
fixed length

512 bytes 512 bytes 512 bytes 512 bytes 512 bytes

File

variable length

?

Operating Systems 15: File system 9

Contiguous storage
• A file is stored in blocks with increasing block numbers

• requires to store information about the first block and the
number of subsequent blocks, e.g. Start: block 2, length: 3

• Advantage:
• Access to all blocks with minimal delay due to disk arm

positioning
• Fast direct access to a given file offset position
• Used for read-only file systems, e.g. CD-ROM/DVD

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

Operating Systems 15: File system 10

Contiguous storage problems
• Finding free space on the disk

• required: sufficiently large set of contiguous free disk blocks
• Fragmentation

• free blocks that cannot be used since they are too small for
the given file

• cf. main memory management
• The size of new files is usually not known in advance

• Extending (growing the size of) a file is problematic:
what if the following blocks are already allocated?

• Requires copying of data if insufficient free following
blocks are available

Operating Systems 15: File system 11

Linked list storage
• Blocks of a file are linked

• e.g. used on Commodore disk drives (C64 etc.)
• block size 256 bytes
• first two bytes: track and sector nr. of following block
• if track number = 0 ➛ final block
• 254 byte payload data

• Files can be extended and shrunk

Block 3 Block 8 Block 1 Block 9

Operating Systems 15: File system 12

Linked list storage problems
• Available storage is reduced by amount of memory used for

pointers
• Problematic when using paging:

a page would always require parts of two disk blocks

• Error prone
• a file cannot be completely restored if the pointer

information contains errors

• Direct access to arbitrary file positions is difficult

• Requires frequent positioning of the disk head when the data
blocks are spread over the disk

Operating Systems 15: File system 13

Linked list storage: FAT
• Links are stored in separate disk blocks

• FAT: file allocation table (first used in MS-DOS)

• Advantages:
• complete content of data block is usable
• redundant storage of the FAT is possible

• useful in case of an error

Block 3 Block 8 Block 1 Block 9

Blocks of the file: 3, 8, 1, 9

9 8 1 –
0 5 10

first file block

Operating Systems 15: File system 14

Linked list storage problems (2)
• Additional loading of at least one block required

• it is possible to cache the FAT to increase efficiency

• Unused information is loaded
• FAT contains links for all files

• Search overhead for the data block containing information at a
given offset inside a file

• Frequent positioning of the disk head when data blocks are
scattered over the disk

Operating Systems 15: File system 15

Discussion: chunks/extents/clusters
• Variation

• Split a file into sequences of blocks stored contiguously
(called chunk, extent or cluster)

• Reduces the number of positioning actions
• Improves the speed to search for a block linear

• depending on the chunk size
• Problems:

• additional information required for managing chunks
• fragmentation

• fixed size: inside of a sequence (internal fragmentation)
• variable size: outside of the sequences (external fragm.)

• Is used in practice, but does not have significant advantages

Operating Systems 15: File system 16

Indexed storage
• A special disk block contains block numbers of the data blocks

of a file

• Problem
• Fixed number of blocks that can be referenced in the index

block
• Fragmentation for small files
• Extensions required for large files

Block 3 Block 8 Block 1 Block 9

Blocks of the file: 3, 8, 1, 9

83 91
0 5 10

first file block

Operating Systems 15: File system

inode

17

Indexed storage: Unix inodes

:

direct 0

direct 1

direct 9

single indirect

double indirect

triple indirect

file blocks

:
:
:

Operating Systems 15: File system 18

Indexed storage: discussion
• Use of multiple indexing levels

• inodes require a block on the disk in any case
(fragmentation is not a problem for small files)

• multiple levels of indexing enable the addressing of large
files

• Disadvantage:
• multiple blocks have to be loaded (only for large files)

Operating Systems 15: File system 19

Tree sequential storage
• Used in databases to efficiently find records using a search key

• Key space can be sparsely populated
• Can also be used to find chunks of files with a certain file offset, e.g. in

NTFS, btrfs, IBM JFS2, Apple HFS+ (B+ tree)

5–6

219

96 2017 2826

Bl. 5

Bl. 6

7–9

Bl. 7

Bl. 8

Bl. 9

– 15–17

Bl. 15

Bl. 16

Bl. 17

18–20

Bl. 18

Bl. 19

Bl. 20

21

Bl. 21

25–26

Bl. 25

Bl. 25

27–28

Bl. 27

Bl. 28

–

Operating Systems 15: File system 20

Free space management
Similar to free main memory management
• Bit vectors indicate for each block if it is used or not
• Linked Lists represent free blocks

• linking information can be stored in the free blocks
• Optimization: information on contiguous block is not stored

separately but in one single piece
• Optimization: one free block contains many block numbers of

additional free blocks and possibly also the block number of an
additional block containing the numbers of free blocks

free blocks

free block list with references

Operating Systems 15: File system 21

Free space management (2)
• Tree sequential storage of free block sequences

• Enables faster search for a free sequence of blocks of a
given size

• Used e.g. in the SGI XFS file system

Operating Systems 15: File system 22

Directory management: lists
• Entries of identical length stored one after the other in a list, e.g.

• Problems:
• Linear search for a given entry required
• When sorting the list: fast search, insertion overhead

8 char. 3 ch.

name exten-
sion

attributes

FAT32:

creation date
last access

last change
first data block

length

Unix System V 3.2: 14 char.

inode number file name (14 char. max)

long file names in VFAT use multiple directory entries

Operating Systems 15: File system 23

Using hash functions
• Function maps file name to index in directory list
• Enables faster access to the entry

• no linear search required
• Simple (but bad…) example:

(∑ character values) mod N

• Problems:
• Collisions (multiple file names mapped to the same entry)
• Adaptation of the list size required if list is full

file name

directory entries

hash function

index
0

N-1

Operating Systems 15: File system 24

List elements with variable length
• Example: used in 4.2 BSD, System V Rel. 4, etc.

• Problems:
• management of free entries in the list
• fragmentation (need for compaction etc.)

inode number

offset to next valid entry

name length
name

…

Operating Systems 15: File system 25

Unix example: System V file system
• Block organization

• Boot block contains information used to load the OS
• Superblock contains management data for a file system:

• number of blocks and inodes
• number and list of free blocks and inodes
• attributes (e.g. flag indicating the file system was modified)

0 1 2

super block
inodes

boot block

… …
isize

data blocks
(files, directories, index blocks)

Operating Systems 15: File system 26

Unix example: Berkeley Fast File System
• Block organization (used from 4.2 BSD Unix onwards)

• Copy of the superblock is stored in every cylinder group
• One file is stored inside a single cylinder group if possible
• Directories are distributed, files of a directory are stored together

• Advantage: reduced positioning time

cylinder group:
set of contiguous cylinders
(usually 16)boot block

superblock
cylinder group block

first cylinder group second cylinder group

inodes data blocks

Operating Systems 15: File system 27

Unix example: Linux ext2/3/4 file system
• Block organization

• Similar layout to BSD FFS
• Block groups are independent of cylinders

block group:
set of contiguous blocks

boot block
superblock

cylinder group block

bitmaps (free inodes and blocks)

first block group second block group

inodes data blocks

Operating Systems 15: File system 28

Conclusion
File systems are an operating system abstraction
• Logically related information is represented and stored as a file
• Often uses a hierarchical directory structure to organize data
... are influenced by the hardware
• Minimization of positioning times for disks
• Wear leveling for Flash memories
... are influenced by the application profile
• Block size

• too small → management data structures can lead to
performance loss

• too big → fragmentation wastes disk space
• Structure of directories

• no hash function → long search
• using a hash function → more administrative overhead

Operating Systems 15: File system 29

References
[1] Karels, M.; M. K. McKusick (September 1986).
 Towards a Compatible File System Interface.
 Proceedings of the European UNIX Users Group Meeting,
 Manchester, England: EUUG. pp. 481–496
[2] Apple Inc. Inside Macintosh Volume 2: Files.
[3] Maurice J. Bach.
 Design of the UNIX Operating System.
 Prentice Hall 1986, ISBN 978-0132017992
[4] Marshall Kirk McKusick, William Joy, Samuel Leffler and Robert
 Fabry (1984).
 A Fast File System for UNIX" (PDF)
 ACM Transactions on Computer Systems. 2 (3): 181–197
[5] R. Card, T. Y. Ts’o, and S. Tweedie.
 Design and implementation of the second extended filesystem
 Proceedings of the 1994 Amsterdam Linux Conference, 1994.

